When 5 is added to one-fifth of a number , the sum is equal to 4 less than one-fourth of that number. Find the number .
Answers
- When 5 is added to one-fifth of a number , the sum is equal to 4 less than one-fourth of that number. Find the number .
- One-fifth of x =
- One-fifth of x increased by 5 =
- One-fourth of x =
- 4 less than one-fourth of x =
━━━━━━━━━━━━━━━━━━━━━━━━━
━━━━━━━━━━━━━━━━━━━━━━━━━
━━━━━━━━━━━━━━━━━━━━━━━━━
━━━━━━━━━━━━━━━━━━━━━━━━━
When 5 is added to one-fifth of a number , the sum is equal to 4 less than one-fourth of that number. Find the number .
\begin{gathered}\\ \\ \\ \end{gathered}
\large\underline{ \underline{ \sf \maltese{ \: Given:- }}}
✠Given:−
\red{\boxed{ \sf \blue{ Let \:the\: Number\: be\: x }}}
LettheNumberbex
One-fifth of x = \begin{gathered}\sf\green{ \frac{1}{5} x \: = \: \frac{x}{5} }\\ \\\end{gathered}
5
1
x=
5
x
One-fifth of x increased by 5 = \begin{gathered}\sf\green{ \frac{x}{5} \: + \: 5 }\\ \\\end{gathered}
5
x
+5
One-fourth of x = \begin{gathered}\sf\green{\frac{1}{4} x \: = \: \frac{x}{4} }\\ \\\end{gathered}
4
1
x=
4
x
4 less than one-fourth of x = \begin{gathered}\sf\green{ \frac{x}{4} \: - \: 4 }\\ \\\end{gathered}
4
x
−4
━━━━━━━━━━━━━━━━━━━━━━━━━
\large\underline{ \underline{ \sf \maltese{ \: Solution:- }}}
✠Solution:−
\begin{gathered}\begin{gathered}\begin{gathered}\underline{\boldsymbol{ \: \: \: \: \: \: \: According\: \: to \: \:the\: \: Question : \: \: \: \: }} \\\end{gathered}\end{gathered} \end{gathered}
AccordingtotheQuestion:
\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}: \implies \underline\blue{ \boxed{\displaystyle \sf \bold\orange{\: \frac{x}{5} \: + \: 5 \: = \: \frac{x}{4} \: - \: 4 }} }\\ \end{gathered}\end{gathered}\end{gathered}\end{gathered}
:⟹
5
x
+5=
4
x
−4
\begin{gathered}\qquad \quad {:} \longrightarrow \sf{\sf{ \frac{x}{5} \: + \: 5 \: = \: \frac{x}{4} \: - \: 4 }}\\ \\\end{gathered}
:⟶
5
x
+5=
4
x
−4
\begin{gathered}\qquad \quad {:} \longrightarrow \sf{\sf{ \frac{x}{5} \: - \: \frac{x}{4} \: = \: ( - 4 \: - 5) }}\\ \\\end{gathered}
:⟶
5
x
−
4
x
=(−4−5)
\begin{gathered}\qquad \quad {:}\longrightarrow\sf{\sf{ \frac{4x \: - \: 5x}{20} \: = \: - 9 }}\\ \\\end{gathered}
:⟶
20
4x−5x
=−9
\begin{gathered}\qquad \quad {:}\longrightarrow\sf{\sf{ \frac{-x}{20} \: = \: - 9 }}\\ \\\end{gathered}
:⟶
20
−x
=−9
\begin{gathered}\qquad \quad {:}\longrightarrow\sf{\sf{ -x \: = \: - 9 \: \times \: 20}}\\ \\\end{gathered}
:⟶−x=−9×20
\begin{gathered}\qquad \quad {:}\longrightarrow\sf{\sf{ -x \: = \: - 180}}\\ \\\end{gathered}
:⟶−x=−180
\begin{gathered}\qquad \quad {:}\longrightarrow\sf{\sf{ \cancel{-}x \: = \: \cancel{ - }180}}\\ \\\end{gathered}
:⟶
−
x=
−
180
\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{x \: = \: 180 }}}:⟶
x=180
━━━━━━━━━━━━━━━━━━━━━━━━━
\large\underline{ \underline{ \sf \maltese{ \: Verification:- }}}
✠Verification:−
\begin{gathered}\qquad \quad {:} \longrightarrow \sf{\sf{ \frac{x}{5} \: + \: 5 \: = \: \frac{x}{4} \: - \: 4 }}\\ \\\end{gathered}
:⟶
5
x
+5=
4
x
−4
\begin{gathered}\qquad \quad {:} \longrightarrow \sf{\sf{ \frac{180}{5} \: + \: 5 \: = \: \frac{180}{4} \: - \: 4 }}\\ \\\end{gathered}
:⟶
5
180
+5=
4
180
−4
\begin{gathered}\qquad \quad {:} \longrightarrow \sf{\sf{ 36 \: + \: 5 \: = \: 45 \: - \: 4 }}\\ \\\end{gathered}
:⟶36+5=45−4
\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{41 \: = \: 41 }}}:⟶
41=41
\begin{gathered} \quad {:} \longrightarrow \sf{\sf\blue{Hence \: Verified }}\\ \\\end{gathered}
:⟶HenceVerified
━━━━━━━━━━━━━━━━━━━━━━━━━
\begin{gathered}\begin{gathered}\begin{gathered}\qquad \therefore\: \sf{ x \: = \underline {\underline{180}}}\\\end{gathered}\end{gathered} \end{gathered}
∴x=
180
━━━━━━━━━━━━━━━━━━