Math, asked by RangeOutComing, 4 months ago

When 5 is added to one-fifth of a number , the sum is equal to 4 less than one-fourth of that number. Find the number .​

Answers

Answered by thebrainlykapil
222

\large\underline{ \underline{ \sf \maltese{ \: Question:- }}}

  • When 5 is added to one-fifth of a number , the sum is equal to 4 less than one-fourth of that number. Find the number .

\\ \\ \\

\large\underline{ \underline{ \sf \maltese{ \: Given:- }}}

\red{\boxed{ \sf \blue{ Let \:the\: Number\: be\: x }}}

  • One-fifth of x = \sf\green{ \frac{1}{5} x \:  =  \:  \frac{x}{5}  }\\ \\
  • One-fifth of x increased by 5 = \sf\green{ \frac{x}{5} \:  +  \: 5 }\\ \\
  • One-fourth of x = \sf\green{\frac{1}{4} x \:  =  \:  \frac{x}{4}   }\\ \\
  • 4 less than one-fourth of x = \sf\green{ \frac{x}{4} \:  -  \: 4 }\\ \\

━━━━━━━━━━━━━━━━━━━━━━━━━

\large\underline{ \underline{ \sf \maltese{ \: Solution:- }}}

\begin{gathered}\begin{gathered}\underline{\boldsymbol{ \:  \:  \:  \:  \:  \:  \: According\:  \: to \:  \:the\:  \: Question : \:  \:  \:  \: }} \\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}: \implies \underline\blue{ \boxed{\displaystyle \sf \bold\orange{\:   \frac{x}{5}  \:  +  \: 5 \:  =  \:  \frac{x}{4}  \:  -  \: 4  }} }\\ \end{gathered}\end{gathered}\end{gathered}

\qquad \quad {:} \longrightarrow \sf{\sf{   \frac{x}{5}  \:  +  \: 5 \:  =  \:  \frac{x}{4}  \:  -  \: 4  }}\\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{ \frac{x}{5}  \:  -  \:  \frac{x}{4}  \:  =  \: ( - 4 \:  - 5)  }}\\ \\

\qquad \quad {:}\longrightarrow\sf{\sf{  \frac{4x \:  -  \: 5x}{20}  \:  =  \:  - 9 }}\\ \\

\qquad \quad {:}\longrightarrow\sf{\sf{  \frac{-x}{20}  \:  =  \:  - 9 }}\\ \\

\qquad \quad {:}\longrightarrow\sf{\sf{  -x  \:  =  \:    - 9 \:  \times  \: 20}}\\ \\

\qquad \quad {:}\longrightarrow\sf{\sf{  -x  \:  =  \:    - 180}}\\ \\

\qquad \quad {:}\longrightarrow\sf{\sf{  \cancel{-}x  \:  =  \:   \cancel{ - }180}}\\ \\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{x \: = \: 180  }}}

━━━━━━━━━━━━━━━━━━━━━━━━━

\large\underline{ \underline{ \sf \maltese{ \: Verification:- }}}

\qquad \quad {:} \longrightarrow \sf{\sf{   \frac{x}{5}  \:  +  \: 5 \:  =  \:  \frac{x}{4}  \:  -  \: 4  }}\\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{   \frac{180}{5}  \:  +  \: 5 \:  =  \:  \frac{180}{4}  \:  -  \: 4  }}\\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{  36 \:   +  \: 5 \:  =  \: 45 \:  -  \: 4 }}\\ \\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{41 \: = \: 41 }}}

 \quad {:} \longrightarrow \sf{\sf\blue{Hence \: Verified   }}\\ \\

━━━━━━━━━━━━━━━━━━━━━━━━━

\begin{gathered}\begin{gathered}\qquad \therefore\: \sf{ x \: = \underline {\underline{180}}}\\\end{gathered}\end{gathered}

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by ITZSCIENTIST
51

When 5 is added to one-fifth of a number , the sum is equal to 4 less than one-fourth of that number. Find the number .

\begin{gathered}\\ \\ \\ \end{gathered}

\large\underline{ \underline{ \sf \maltese{ \: Given:- }}}

✠Given:−

\red{\boxed{ \sf \blue{ Let \:the\: Number\: be\: x }}}

LettheNumberbex

One-fifth of x = \begin{gathered}\sf\green{ \frac{1}{5} x \: = \: \frac{x}{5} }\\ \\\end{gathered}

5

1

x=

5

x

One-fifth of x increased by 5 = \begin{gathered}\sf\green{ \frac{x}{5} \: + \: 5 }\\ \\\end{gathered}

5

x

+5

One-fourth of x = \begin{gathered}\sf\green{\frac{1}{4} x \: = \: \frac{x}{4} }\\ \\\end{gathered}

4

1

x=

4

x

4 less than one-fourth of x = \begin{gathered}\sf\green{ \frac{x}{4} \: - \: 4 }\\ \\\end{gathered}

4

x

−4

━━━━━━━━━━━━━━━━━━━━━━━━━

\large\underline{ \underline{ \sf \maltese{ \: Solution:- }}}

✠Solution:−

\begin{gathered}\begin{gathered}\begin{gathered}\underline{\boldsymbol{ \: \: \: \: \: \: \: According\: \: to \: \:the\: \: Question : \: \: \: \: }} \\\end{gathered}\end{gathered} \end{gathered}

AccordingtotheQuestion:

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}: \implies \underline\blue{ \boxed{\displaystyle \sf \bold\orange{\: \frac{x}{5} \: + \: 5 \: = \: \frac{x}{4} \: - \: 4 }} }\\ \end{gathered}\end{gathered}\end{gathered}\end{gathered}

:⟹

5

x

+5=

4

x

−4

\begin{gathered}\qquad \quad {:} \longrightarrow \sf{\sf{ \frac{x}{5} \: + \: 5 \: = \: \frac{x}{4} \: - \: 4 }}\\ \\\end{gathered}

:⟶

5

x

+5=

4

x

−4

\begin{gathered}\qquad \quad {:} \longrightarrow \sf{\sf{ \frac{x}{5} \: - \: \frac{x}{4} \: = \: ( - 4 \: - 5) }}\\ \\\end{gathered}

:⟶

5

x

4

x

=(−4−5)

\begin{gathered}\qquad \quad {:}\longrightarrow\sf{\sf{ \frac{4x \: - \: 5x}{20} \: = \: - 9 }}\\ \\\end{gathered}

:⟶

20

4x−5x

=−9

\begin{gathered}\qquad \quad {:}\longrightarrow\sf{\sf{ \frac{-x}{20} \: = \: - 9 }}\\ \\\end{gathered}

:⟶

20

−x

=−9

\begin{gathered}\qquad \quad {:}\longrightarrow\sf{\sf{ -x \: = \: - 9 \: \times \: 20}}\\ \\\end{gathered}

:⟶−x=−9×20

\begin{gathered}\qquad \quad {:}\longrightarrow\sf{\sf{ -x \: = \: - 180}}\\ \\\end{gathered}

:⟶−x=−180

\begin{gathered}\qquad \quad {:}\longrightarrow\sf{\sf{ \cancel{-}x \: = \: \cancel{ - }180}}\\ \\\end{gathered}

:⟶

x=

180

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{x \: = \: 180 }}}:⟶

x=180

━━━━━━━━━━━━━━━━━━━━━━━━━

\large\underline{ \underline{ \sf \maltese{ \: Verification:- }}}

✠Verification:−

\begin{gathered}\qquad \quad {:} \longrightarrow \sf{\sf{ \frac{x}{5} \: + \: 5 \: = \: \frac{x}{4} \: - \: 4 }}\\ \\\end{gathered}

:⟶

5

x

+5=

4

x

−4

\begin{gathered}\qquad \quad {:} \longrightarrow \sf{\sf{ \frac{180}{5} \: + \: 5 \: = \: \frac{180}{4} \: - \: 4 }}\\ \\\end{gathered}

:⟶

5

180

+5=

4

180

−4

\begin{gathered}\qquad \quad {:} \longrightarrow \sf{\sf{ 36 \: + \: 5 \: = \: 45 \: - \: 4 }}\\ \\\end{gathered}

:⟶36+5=45−4

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{41 \: = \: 41 }}}:⟶

41=41

\begin{gathered} \quad {:} \longrightarrow \sf{\sf\blue{Hence \: Verified }}\\ \\\end{gathered}

:⟶HenceVerified

━━━━━━━━━━━━━━━━━━━━━━━━━

\begin{gathered}\begin{gathered}\begin{gathered}\qquad \therefore\: \sf{ x \: = \underline {\underline{180}}}\\\end{gathered}\end{gathered} \end{gathered}

∴x=

180

━━━━━━━━━━━━━━━━━━

Similar questions