When (56)^a=(5.6)^b=(10)^c then prove 1/a=1/b+1/c
Answers
Answered by
8
Solution :-
56^a = 5.6^b = 10^c
1) 56^a = 10^c
⇒ 56 = 10^(c/a) --- eq(1)
2) 5.6^b = 10^c
⇒ 5.6 = 10^(c/b)
Multiplying on both sides by 10
⇒ 5.6 * 10 = 10^(c/b) * 10¹
⇒ 56 = 10^(c/b + 1) ---- eq(2)
[ Because a^m * a^n = a^(m + n) ]
From eq(1) and eq(2)
⇒ 10^(c/a) = 10^(c/b + 1)
Since bases are equal we can equate powers
⇒ c/a = c/b + 1
⇒ c/a - c/b = 1
⇒ c(1/a - 1/b) = 1
⇒ 1/a - 1/b = 1/c
⇒ 1/a = 1/b + 1/c
Hence proved.
Learn more :
If 2.3^x=0.23^y=1000 then 1/x-1/y value
https://brainly.in/question/196953
Answered by
11
Answer:
1 / a = 1 / b + 1 / c [ Proved ]
Step-by-step explanation:
Given :
Taking log :
Using log rule i.e if log aˣ = x log a
a log 56 = c log 10
= > log 56 = c / a
b log 5.6 = c log 10
log 5.6 = c / b
log 56 - log 10 = c /b
We have log 56 = c / a and know value of log 10 = 1
c / a - 1 = c / b
c ( 1 / a - 1 / b ) = 1
1 / a = 1 / b + 1 / c
Hence proved.
Similar questions
History,
5 months ago
Social Sciences,
5 months ago
Math,
5 months ago
History,
11 months ago
Science,
11 months ago
Social Sciences,
1 year ago
Hindi,
1 year ago