Math, asked by josimuddin786laskar, 1 month ago

When..a+1/a=1 ;a^3+1=?

Answers

Answered by TYKE
9

Question :

 \sf \small  If \:  a +  \frac{1}{a}  = 1 \: then \: what \: is \:the   \: value \: of \: {a}^{3}  +  \frac{1}{ {a}^{3} }

To find :

 \sf \small \: the \: value \: of \:  {a}^{3}  +  \frac{1}{ {a}^{3} }

Formula Used :

 \underline{ \boxed{ \green{ \sf \small a^{3}  +  \frac{1}{ {a}^{3} }  } \rarr \pink{(\sf \small a +  \frac{1}{a} )^{3} } - \purple{\sf \small 3(a +  \frac{1}{a} )}}}

Solution :

 \sf \small a^{3}  +  \frac{1}{ {a}^{3} }   (\sf \small a +  \frac{1}{a} )^{3} -  3(a +  \frac{1}{a} )

Putting the value of a + 1/a we get

 \sf \small a^{3}  +  \frac{1}{ {a}^{3} }   \rarr {(1)}^{3}  - 3(1)

 \sf \small a^{3}  +  \frac{1}{ {a}^{3} } \rarr1 + 3

 \sf \small a^{3}  +  \frac{1}{ {a}^{3} } = 4

Final Answer :

 \sf \small \:  \therefore The  \: value \:  of   \:  a^{3}  +  \frac{1}{ {a}^{3} } is \:  \underline{  \boxed{ 4 }}

Answered by barani79530
0

Step-by-step explanation:

Putting the value of a + 1/a we get</p><p></p><p>\sf \small a^{3} + \frac{1}{ {a}^{3} } \rarr {(1)}^{3} - 3(1)a </p><p>3</p><p> + </p><p>a </p><p>3</p><p> </p><p>1</p><p>	</p><p> →(1) </p><p>3</p><p> −3(1)</p><p></p><p>\sf \small a^{3} + \frac{1}{ {a}^{3} } \rarr1 + 3a </p><p>3</p><p> + </p><p>a </p><p>3</p><p> </p><p>1</p><p>	</p><p> →1+3</p><p></p><p>\sf \small a^{3} + \frac{1}{ {a}^{3} } = 4a </p><p>3</p><p> + </p><p>a </p><p>3</p><p> </p><p>1</p><p>	</p><p> =4

Similar questions