When a=3 , b=2 ,then the value of the expression 2a2+2b2+4ab is
Answers
Answered by
2
Step-by-step explanation:
we can write 2a² = (√2a)²
so, 2b² = (√2b)²
4ab = 2(√2a)(√2b)
so, we can write 2a² + 2b² + 4ab as-:
(√2a)² + (√2b)² + 2(√2a)(√2b)
using identity a²+b² +2ab = (a+b)²
=> (√2a + √2b)²
a = 3 ; b = 2
putting the values of a and b
(√2(3) + √2(2))²
(3√2 + 2√2)²
(5√2)²
25 × 2
=> 50
so the value of the given expression is 50
Answered by
2
Answer:
Given a=3 , b=2 ,
the value of 2a²+2b²+4ab is
=2(a²+b²+2ab)
=2(a+b)²
=2(3+2)²
=2(5)²
=2×25
=50
Similar questions