Math, asked by simivilotemin, 1 month ago

when a = ,√ 5+√3 ,& b=√5-√3, a/ b +b/a is equal to integer?​

Answers

Answered by teja0311
0

We know that

a = √5+√3 and b = √5-√3

Now,

1/a = 1/(√5+√3) = (√5-√3)/2       Therefore, b/a = (\sqrt{5} - \sqrt{3})  ^{2}/2

1/b = 1/(√5-√3) = (√5+√3)/2       Therefore, a/b = (\sqrt{5} + \sqrt{3})  ^{2}/2

So, a/b + b/a = (\sqrt{5} + \sqrt{3})  ^{2}/2 + (\sqrt{5} - \sqrt{3})  ^{2}/2

                    = [(\sqrt{5} + \sqrt{3})  ^{2} + (\sqrt{5} - \sqrt{3})  ^{2}]/2

                    = 16/2 = 8

For deriving last step use the formula

       (a +b)^{2} + (a - b)^{2} = 2 (a^{2} + b^{2})

Since answer is 8, it is an integer.

Similar questions