Physics, asked by ajomon5166, 1 year ago

When a ball thrown vertically upward provide to a distance of 19.6 M find the velocity of ball and time taken by it and rise the height

Answers

Answered by BrainlyConqueror0901
31

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore Initial\:velocity=14\sqrt{2}\:m/s}}

{\bold{\therefore Time=1.4\sqrt{2}\:sec}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

• In the given question information given about a ball thrown vertically upward provide to a distance of 19.6 m.

• We have to find the velocity of ball and time taken by it.

 \underline \bold{Given : } \\  \implies Final \: velocity(v) = 0 \:m/s\\  \\  \implies Height(s) = 19.6 \: m \\  \\  \implies Acceleration(a) = -g =  - 10 \: m /{s}^{2}  \\  \\  \underline \bold{To \: Find : } \\   \implies Initial \: velocity(u) = ? \\  \\  \implies Time \: taken(t) = ?

• According to given question :

 \bold{By \: second \: equation \: of \: motion : } \\  \implies  {v}^{2}  =  {u}^{2}   + 2as \\  \\  \implies  {0}^{2}  =  {u}^{2}  + 2 \times ( - 10) \times 19.6 \\  \\  \implies  {u}^{2}  = 392 \\  \\  \implies u =  \sqrt{392}  \\  \\   \bold{\implies u = 14 \sqrt{2}  \: m/s} \\  \\ \bold{By \: first \: equation \: of \: motion : } \\  \implies v = u + at \\  \\  \implies 0 = 14 \sqrt{2}  + ( - 10) \times t \\  \\  \implies    \cancel- 14 \sqrt{2}  =   \cancel- 10t \\  \\  \implies t =  \frac{14 \sqrt{2} }{10}  \\  \\  \bold{ \implies t = 1.4 \sqrt{2} \: sec }

Answered by Anonymous
30

\boxed{\sf\green{Answer}}

\sf u =14\sqrt{ 2}m{s}^{-1}

\sf t = 2s

\boxed{\sf \green{Explanation}}

Given:

  • S = 19.6m
  • a = -g
  • v = 0

To Find:

Velocity (v) and time taken(t)

Solution:

\red{\boxed{\blue{{v}^{2}- {u}^{2} = 2as}}}

on putting the values

\sf{0}^{2}- {u}^{2} = 2(-9.8 m{s}^{-2})(19.6m )

\sf {u}^{2} = 2(10 m{s}^{-2})(19.6m)

\sf {u}^{2} = 2(196{m}^{2}{s}^{-2})

\sf u =\sqrt{ 2(196{m}^{2}{s}^{-2})}

\sf u =14\sqrt{ 2}m{s}^{-1}

Now,

\green{\boxed{\pink{v = u+at}}}

\sf 0 =14\sqrt{ 2}m{s}^{-1} + (-10m{s}^{-2})t

\sf 14\sqrt{ 2}m{s}^{-1} = (10m{s}^{-2})t

\sf t = \dfrac{14\sqrt{ 2}m{s}^{-1}} {10m{s}^{-2}}

\sf t = 1.4\sqrt{ 2}s

\sf t = (\sqrt{ 2})(\sqrt{ 2})s

\sf t = 2s

Similar questions