Math, asked by mirkamruzaman370, 3 months ago

When a car is sold for rupees 36000, the loss is 10%. What is the cost price of the car?

Answers

Answered by IntrovertLeo
8

Given:

A car with -

  • Selling Price = Rs. 36000.
  • Loss % = 10 %

What To Find:

We have to -

  • Find the cost price of a car.

Formula Needed:

The formula is -

\bf CP = \dfrac{SP \times 100}{100 - Loss \: \%}

Abbreviation Used:

  • CP = Cost Price
  • SP = Selling Price

Solution:

Using the formula,

\sf \implies CP = \dfrac{SP \times 100}{100 - Loss \: \%}

Substitute the values,

\sf \implies CP = \dfrac{36000 \times 100}{100 - 10 \: \%}

Solve the numerator,

\sf \implies CP = \dfrac{3600000}{100 - 10 \: \%}

Solve the denominator,

\sf \implies CP = \dfrac{3600000}{90}

Divide 3600000 by 90,

\sf \implies CP =40000

Final Answer:

∴ Thus. the cost price of the car is Rs. 40000.

Answered by Anonymous
174

Answer:

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{darkblue}{Given:}}}}}}}\end{gathered}

  •  \dashrightarrow{\sf{Selling \: Price \: of \: Car = 36000}}
  •  \dashrightarrow \sf{Loss \% = 10 \%}

\begin{gathered} \\ \end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{darkblue}{To Find:}}}}}}}\end{gathered}

  •  \dashrightarrow{\sf{Cost  \: Price  \: of \:  car}}

\begin{gathered} \\ \end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{darkblue}{Using Formula:}}}}}}}\end{gathered}

\dag{\underline{\boxed{\sf{C.P =  {\bigg\{}{\dfrac{S.P \times 100}{100 - Loss \: \%}}{\bigg\}}}}}}

\begin{gathered} \\ \end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{darkblue}{Solution:}}}}}}}\end{gathered}

 \dag \: {\underline{\pmb{\frak{\red{Finding  \: the \:  Cost  \: price  \: by \:  using \:  formula }}}}}

 \quad{: \implies{\sf{C.P =  \bf{\dfrac{S.P \times 100}{100 - Loss \: \%}}}}}

  • Substituting the values

 \quad{: \implies{\sf{CP =  \bf{\dfrac{ 36000 \times 100}{100 - 10}}}}}

 \quad{: \implies{\sf{CP =  \bf{\dfrac{ 36000 \times 100}{90}}}}}

\quad{: \implies{\sf{CP = \bf{\dfrac{ 3600000}{90}}}}}

\quad{: \implies{\sf{CP = \bf{\cancel{\dfrac{3600000}{90}}}}}}

\quad{: \implies{\sf{CP = \bf{40000}}}}

\begin{gathered} \dag{\overline{\underline{\boxed{\bf{\color{red}{CP=40000}}}}}}\end{gathered}

 \therefore{\underline{\sf{Cost \:  Price \:  of  \: car  \: is \:  Rs.40000...}}}

\begin{gathered} \\ \end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{darkblue}{Know More:}}}}}}}\end{gathered}

\boxed{\begin{minipage}{5cm}\bigstar$\:\underline{\textbf{Profit and Loss Formulas :}}\\\\ \\ \sf {\textcircled{\footnotesize\textsf{1}}} \:S.P. =$\sf \bigg\lgroup\dfrac{100 + Profit \%}{100}\bigg\rgroup \times 100$\\\\\\ \sf {\textcircled{\footnotesize\textsf{2}}} \:\:C.P. = $\sf \dfrac{S.P. \times 100}{100 + Profit \%}$\\\\\\\sf{\textcircled{\footnotesize\textsf{3}}} \:\:Profit = $\sf \dfrac{Profit \% \times C.P.}{100}$\\\\\\ \sf{\textcircled{\footnotesize\textsf{4}}} \: \:Profit (gain) = S.P. - C.P. \\\\\\\sf{\textcircled{\footnotesize\textsf{5}}} \: \:$\sf Profit \% = \dfrac{Profit}{C.P.} \times 100$\end{minipage}}

\begin{gathered} \\ \end{gathered}

\begin{gathered}\begin{gathered}\large\boxed{ \begin{array}{cc}\large\sf\dag \: {\underline{More \: Formulae}} \\ \\ \bigstar \: \sf{Gain = S.P  -  C.P} \\ \\ \bigstar \:\sf{Loss = C.P  -  S.P} \\ \\ \bigstar \: \sf{Gain \: \% = \Bigg( \dfrac{Gain}{C.P} \times 100 \Bigg)\%} \\ \\ \bigstar \: \sf{loss \: \% = \Bigg( \dfrac{loss}{C.P} \times 100 \Bigg)\%} \\ \\ \bigstar \: \sf{S.P = \dfrac{100+Gain\%}{100} \times C.P} \\ \\ \bigstar \: \sf{ C.P =\dfrac{100}{100+Gain\%} \times S.P} \\ \\\bigstar \: \sf{ S.P = \dfrac{100 - loss\%}{100} \times C.P} \\ \\ \bigstar \: \sf{ C.P =\dfrac{100}{100 - loss\%} \times S.P}\end{array} }\end{gathered}\end{gathered}

Similar questions