Math, asked by vandanakaushik625, 1 year ago

When a die is thrown, x denotes the number that turns up. Find e(x), e(x2) and var(x)?

Answers

Answered by pulakmath007
7

SOLUTION

GIVEN

When a die is thrown, X denotes the number that turns up.

TO DETERMINE

E(X) , E(X²) , Var(X)

EVALUATION

Here a die is thrown

X denotes the number that turns up.

Then the spectrum consists of the value 1 , 2 , 3 , 4 , 5 , 6

Now

E(X)

 \displaystyle \sf{ =  \sum xp}

 \displaystyle \sf{ =   \bigg( 1. \frac{1}{6} + 2. \frac{1}{6} +  3. \frac{1}{6} +4. \frac{1}{6} + 5. \frac{1}{6}  +6. \frac{1}{6} \bigg)}

 \displaystyle \sf{ =  \frac{1}{6}   (1 + 2 + 3 + 4 + 5 + 6)}

 \displaystyle \sf{ =  \frac{21}{6} }

 \displaystyle \sf{ =  \frac{7}{2} }

Now

E(X²)

 \displaystyle \sf{ =  \sum  {x}^{2} p(x)}

 \displaystyle \sf{ =   \bigg(  {1}^{2} . \frac{1}{6} +  {2}^{2} . \frac{1}{6} +   {3}^{2} . \frac{1}{6} + {4}^{2} . \frac{1}{6} +  {5}^{2} . \frac{1}{6}  + {6}^{2} . \frac{1}{6} \bigg)}

 \displaystyle \sf{ =  \frac{1}{6}   ( {1}^{2}  +  {2}^{2}  +  {3}^{2}  +  {4}^{2}  +  {5}^{2} +  {6}^{2} )}

 \displaystyle \sf{ =  \frac{1}{6}   (1 + 4+ 9 + 16+ 25 + 36)}

 \displaystyle \sf{ =  \frac{91}{6}  }

Now

Var(X)

= E(X²) - (E(X))²

 \displaystyle \sf{ =  \frac{91}{6} -  \frac{49}{4}   }

 \displaystyle \sf{ =  \frac{182 - 147}{12} }

 \displaystyle \sf{ =  \frac{35}{12} }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Generally, what is the range of coefficient of skewness for data where the mode is ill-defined?(A) 0 to 1 (B) -1 to +1

https://brainly.in/question/26142979

2. if arithmetic mean of a seties is 45 and median is 40 then calculate the value of mode of that series

https://brainly.in/question/31548199

Answered by amitnrw
3

Given : a die is thrown, x denotes the number that turns up

To Find :  E(x) , E(x²) and Var(x)

Solution:

x            p(x)       x.P(x)         x²P(x)

1            1/6         1/6            1/6

2           1/6         2/6           4/6

3           1/6         3/6            9/6

4           1/6          4/6          16/6

5           1/6          5/6           25/6

6           1/6           6/6          36/6

                          21/6           91/6

E(x) = ∑xp(x)    =   21/6  = 3.5

E(x²)  = ∑x²p(x)  = 91/6  = 15.167

Var(x) = e(x²) - (e(x))²

Var(X)  =  ∑x²p(x) - (∑xp(x))²    

=   91/6  -   ( 21/6)²

=  91/6 - 441/36

= 105/36

=  35/12

= 2.9167

Learn More:

A r.v. X has the given probability distribution, Find the value of k and ...

brainly.in/question/6536531

Find k if the following is the p.d.f. of a r.v. X: [tex]f(x) = left{ egin ...

brainly.in/question/6536697

Similar questions