Physics, asked by akiraaakhya4980, 11 months ago

When a force of 6⋅0 N is exerted at 30° to a wrench at a distance of 8 cm from the nut, it is just able to loosen the nut. What force F would be sufficient to loosen it if it acts perpendicularly to the wrench at 16 cm from the nut?
Figure

Answers

Answered by kima9
0

Explanation:

please go through the attachment

Attachments:
Answered by bhuvna789456
0

Force (F) = 1.5 N  would be sufficient to loosen it if it acts perpendicularly to the wrench at 16 cm from the nut.

Explanation:

Step 1:

Force of 6N acts at an angle of 30° on a body, now we have to solve the force of 6 N along the wrench and perpendicular to it.

                          P = 6.cos30°  

 Now, the total torque of point A = 0

Step 2:

Consequently, the force component perpendicular to the lock

                          \begin{aligned}&P^{\prime}=6 . \sin 30^{\circ}\\&P^{\prime}=6 \times \frac{1}{2}\\&P^{\prime}=3 N\end{aligned}

Step 3:

The torque ( nut ),

                          =3.0 \times \frac{8}{100}

                         =0.24 \mathrm{N}-\mathrm{m} -----> \text { eqn }(1)

The torque of force F (nut),

                         =F \times \frac{16}{100} N-m -----> eqn ( 2 )

Step 4:

Equating the two that we got,

                        F \times \frac{16}{100}=0.24

                       F=\frac{0.24}{16} \times 100

                      F=\frac{24}{16}

                      F=\frac{3}{2}

                      \mathrm{F}=1.5 \mathrm{N}

Therefore, force ( F ) = 1.5N  would be sufficient to loosen it if it acts perpendicularly to the wrench at 16 cm from the nut.                                        

Attachments:
Similar questions
Math, 5 months ago