Math, asked by ishukapoor3313, 15 hours ago

When a pendulum of length 40cm oscillates. It produces an area of length 16.5cm. Find the angle so formed in degree?
(a)23.625 degree
(b)24.625 degree
(c) 27.575 degree
(d)26.325 degree

Answers

Answered by pk2307923
0

Answer:

\huge{\underline{\underline{\red{\mathfrak{Answer :}}}}}

Answer:

\begin{gathered}\tt Given \begin{cases} \sf{Length \: (l) \: = \: 16 cm} \\ \sf{r \: = \: 50} \end{cases}\end{gathered}

Given{

Length(l)=16cm

r=50

Use formula :

\Large{\boxed{\sf{\theta \: = \: \dfrac{length}{Perimeter}}}}

θ=

Perimeter

length

\rightarrow {\sf{length \: = \: \dfrac{\theta}{360} \: \times \: 2 \: \pi r}}→length=

360

θ

×2πr

\rightarrow {\sf{16 \: = \: \dfrac{\theta}{360} \: \times \: 2(3.14)(50)}}→16=

360

θ

×2(3.14)(50)

\rightarrow {\sf{16 \: = \: \dfrac{\theta}{360} \: \times \: 314}}→16=

360

θ

×314

\rightarrow {\sf{\theta \: = \: \dfrac{16 \: \times \: 360}{314}}}→θ=

314

16×360

\rightarrow {\sf{\theta \: = \: 18.34}}→θ=18.34

∴ Angle is 18° Approximate

Similar questions