When a pendulum of length 40cm oscillates. It produces an area of length 16.5cm. Find the angle so formed in degree?
(a)23.625 degree
(b)24.625 degree
(c) 27.575 degree
(d)26.325 degree
Answers
Answered by
0
Answer:
\huge{\underline{\underline{\red{\mathfrak{Answer :}}}}}
Answer:
\begin{gathered}\tt Given \begin{cases} \sf{Length \: (l) \: = \: 16 cm} \\ \sf{r \: = \: 50} \end{cases}\end{gathered}
Given{
Length(l)=16cm
r=50
Use formula :
\Large{\boxed{\sf{\theta \: = \: \dfrac{length}{Perimeter}}}}
θ=
Perimeter
length
\rightarrow {\sf{length \: = \: \dfrac{\theta}{360} \: \times \: 2 \: \pi r}}→length=
360
θ
×2πr
\rightarrow {\sf{16 \: = \: \dfrac{\theta}{360} \: \times \: 2(3.14)(50)}}→16=
360
θ
×2(3.14)(50)
\rightarrow {\sf{16 \: = \: \dfrac{\theta}{360} \: \times \: 314}}→16=
360
θ
×314
\rightarrow {\sf{\theta \: = \: \dfrac{16 \: \times \: 360}{314}}}→θ=
314
16×360
\rightarrow {\sf{\theta \: = \: 18.34}}→θ=18.34
∴ Angle is 18° Approximate
Similar questions