Physics, asked by nikhatj3624, 1 year ago

When a polynomial 2x^3+3x^2+ax+b is divided by x-2 leaves remainder 2 and when divided by x+2 givea remainder -2 then find a and b

Answers

Answered by amitnrw
23

Answer:

a = -7

b = -12

Explanation:

When a polynomial 2x^3+3x^2+ax+b is divided by x-2 leaves remainder 2 and when divided by x+2 givea remainder -2 then find a and b

f(x) = 2x³ + 3x² + ax + b

dividing by x-2 leaves remainder 2

f(2) = 2

=> 2(2)³ + 3(2)² +2a + b = 2

=> 16 + 12 + 2a + b = 2

=> 2a + b = -26    Eq1

dividing by x+2 leaves remainder -2

=> f(-2) = -2

=> 2(-2)³ + 3(-2)² -2a + b = -2

=> -16 + 12 - 2a + b = -2

=> -2a + b = 2    Eq 2

Adding eq 1 & eq 2

=> 2b = -24

=> b = -12

=> 2a -12 = -26

=> 2a = -14

=> a = -7

Answered by tejasreemannala
9

Answer:

a=(-7) and b=(-12)

Explanation:

Given,

p(x)=2x^3+3x^2+ax+b

g(x)=x-2=0=>x=2   [as -2 coming to RIGHT HAND SIDE(R.H.S)]

f(x)=x+2=0=>x=(-2) [AS 2 IS COMING TO R.H.S]

now, substitute x value in p(x)......

p(2)=>2(2)^3+3(2)^2+a(2)+b=2{ we know the remainder we have to                      takep(x)=2}

       =>16+12+2a+b=2

        =>28+2a+b=2

        =>2a+b=2-28 [as 28 comes to R.H.S, it becomes -28]

        =>2a+b=-26---------{equation 1}

now take p(x)=(-2)

p(-2)=>2(-2)^3+3(-2)^2+a(-2)+b=(-2)

       =>(-16)+12+(-2a)+b=(-2)

       =>  -4-2a+b=(-2)

       =>-2a+b=(-2)+4

       =>-2a+b=2-----------{equation 2}

now take equation 1 +equation 2

 2a+b= -26

+(-2a)+b=2

         2b=-24

--------------------

b=-24/2

b=-12

substitute value of b in equation 1

2a+(-12)= -26

2a-12= -26

2a= -26+12

2a= -14

a= -14/7

a=-7

I HOPE MY ANSWER HELPED YOU......................

 

                     

Similar questions