. When a polynomial 2x +3x² + ax + b is divided by (x - 2) leaves remainder 2, and
(x+2) leaves remainder -2. Find a and b.
Answers
SOLUTION:-
⠀⠀⠀⠀⠀• When a polynomial 2x +3x² + ax + b is ⠀⠀⠀⠀⠀divided by (x - 2) leaves remainder 2, and
⠀⠀⠀⠀⠀(x+2) leaves remainder -2. Find a and b?
⠀⠀⠀⠀⠀• a= -11
⠀⠀⠀⠀⠀• b= -3/2
⠀⠀⠀⠀⠀• P(x) = 2x+3x²+ax+b
⠀⠀⠀⠀⠀• g(x) = (x+2),(x-2)
⠀⠀⠀⠀⠀• Value of a and b
• p(x) = 2x+3x²+ax+b
⇝ 3x²+2x+ax+b
g(x) = x-2
⇝ x-2=0
⇝ x=2
Case 1
When a polynomial 2x +3x² + ax + b is divided by (x - 2) leaves remainder 2
Putting value of x in p(x)
p(x) = 3x²+2x+ax+b =2
➫ 3×(2)²+2×(2)+a×2+b=2
➫ 3×4+4+2a+b=2
➫ 12+4+2a+b=2
➫ 16+2a+b=2
➫2a+b=-14_______________(1)
Case2
When a polynomial 2x +3x² + ax + b is divided by (x +2) leaves remainder -2
p(x) = 3x²+2x+ax+b=0
g(x) = x+2
⇝ x=-2
Putting value of x in p(x)
➫ 3×(-2)²+2×(-2)+a×(-2)+b=0
➫ 3×4-4-2a+b=0
➫ 12-4-2a+b=0
➫ -2a+b=-8____________(2)
On Adding Eq1 and Eq2
-2a + b = -8
2a + b = -14
__________
2b = -22
b= -22/2
putting value of b in eq 1
2a+b=-14
⇢ 2a+(-11)=-14
⇢2a-11=-14
⇢ 2a=-14+11
⇢ 2a= -3
⠀⠀⠀⠀⠀• a= -11
⠀⠀⠀⠀⠀• b= -3/2
_____________________________________________
Answer:
Given:−
⠀⠀⠀⠀⠀• P(x) = 2x+3x²+ax+b
⠀⠀⠀⠀⠀• g(x) = (x+2),(x-2)
\bf\underline{\underline{\purple{To\: Calculate:-}}}
ToCalculate:−
⠀⠀⠀⠀⠀• Value of a and b
\bf\underline{\underline{\blue{Explanation:-}}}
Explanation:−
• p(x) = 2x+3x²+ax+b
⇝ 3x²+2x+ax+b
g(x) = x-2
⇝ x-2=0
⇝ x=2
Case 1
When a polynomial 2x +3x² + ax + b is divided by (x - 2) leaves remainder 2
Putting value of x in p(x)
p(x) = 3x²+2x+ax+b =2
➫ 3×(2)²+2×(2)+a×2+b=2
➫ 3×4+4+2a+b=2
➫ 12+4+2a+b=2
➫ 16+2a+b=2
➫2a+b=-14_______________(1)
Case2
When a polynomial 2x +3x² + ax + b is divided by (x +2) leaves remainder -2
p(x) = 3x²+2x+ax+b=0
g(x) = x+2
⇝ x=-2
Putting value of x in p(x)
➫ 3×(-2)²+2×(-2)+a×(-2)+b=0
➫ 3×4-4-2a+b=0
➫ 12-4-2a+b=0
➫ -2a+b=-8____________(2)
On Adding Eq1 and Eq2
-2a + b = -8
2a + b = -14
__________
2b = -22
b= -22/2
{\boxed{\red{\tt{b= -11 }}}}
b=−11
putting value of b in eq 1
2a+b=-14
⇢ 2a+(-11)=-14
⇢2a-11=-14
⇢ 2a=-14+11
⇢ 2a= -3
{\boxed{\red{\tt{a= -3/2 }}}}
a=−3/2
\bf\underline{\underline{\red{Hence:-}}}
Hence:−
⠀⠀⠀⠀⠀• a= -11
⠀⠀⠀⠀⠀• b=3/2
pla follow and like