Math, asked by Swethagodasi, 23 days ago

when a polynomial 2x3 + 3x^2 + ax+b is divided by (x-2) leaves remainder "2" &(x+2) leaves remainder-2 find a&b​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given polynomial is

\rm :\longmapsto\: {2x}^{3} +  {3x}^{2}  + ax + b

Let we assume that

\rm :\longmapsto\: f(x) = {2x}^{3} +  {3x}^{2}  + ax + b

Now, it is given that, when f(x) is divided by x - 2, it leaves remainder 2.

We know,

Remainder Theorem states that if a polynomial f(x) is divided by linear polynomial x - a, the remainder is f(a)

So, using this concept, we have

\rm :\longmapsto\:f(2) = 2

\rm :\longmapsto\:  {2(2)}^{3} +  {3(2)}^{2}  + 2a + b = 2

\rm :\longmapsto\:  16 + 12 + 2a + b = 2

\rm :\longmapsto\:  28 + 2a + b = 2

\bf\implies \:\boxed{ \tt{ \: 2a + b =  - 26 \:}}  -  -  - (1)

Further, it is given that, when f(x) is divided by x + 2, it leaves remainder - 2.

So, by using Remainder Theorem, we have

\rm :\longmapsto\:f( - 2) =  - 2

\rm :\longmapsto\:  {2( - 2)}^{3} +  {3( - 2)}^{2}   - 2a + b = -  2

\rm :\longmapsto\:  - 16 + 12   - 2a + b = -  2

\rm :\longmapsto\:  - 4   - 2a + b = -  2

\rm :\longmapsto\:  - 2a + b = -  2 + 4

\rm \implies\:\boxed{ \tt{ \:   - 2a + b =2 \: }} -  -  - (2)

On adding equation (1) and equation (2), we get

\rm :\longmapsto\:2b =  - 24

\bf\implies \:\boxed{ \tt{ \: b \:  =  \:  -  \: 12 \: }}

On substituting b = - 12, in equation (2), we get

\rm :\longmapsto\: - 2a - 12 = 2

\rm :\longmapsto\: - 2a = 2 + 12

\rm :\longmapsto\: - 2a = 14

\rm \implies\:\boxed{ \tt{ \: a \:   =  \:  -  \: 7 \: }}

Hence,

 \red{\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:\begin{cases} &\sf{a \:  =  \:  -  \: 7} \\ \\  &\sf{b \:  =  \:  -  \: 12} \end{cases}\end{gathered}\end{gathered}}

Additional Information :-

Factor theorem states that if a polynomial f(x) is divisible by linear polynomial x - a, then f(a) = 0.

More Identities to know :

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Answered by guptaananya2005
1

Answer:

 \\  \\ </p><p>\begin{gathered} \green{\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:\begin{cases} &amp;\sf{a \: = \: - \: 7} \\ \\ &amp;\sf{b \: = \: - \: 12} \end{cases}\end{gathered}\end{gathered}}\end{gathered} \\ </p><p></p><p>

Step-by-step explanation:

Hope it helps you

Similar questions