When a polynomial 2x³ + 3x² + ax + b is divided by ( x - 2 ) leaves reaminder 2 and ( x + 2 ) leave reaminder -2 . Find a and b .
Answers
Step-by-step explanation:
Let
P(x) = 2x³ + 3x² + ax + b
If P(x) divided by (x-2) then the reaminder P(2) = 2
P(2) = 2(2)³ + 3(2)² + a(2) + b = 2
===> 2.8 + 3.4 + 2a + b = 2
===> 16 + 12 + 2a + b = 2
===> 28 + 2a + b = 2
===> 2a + b = 2 - 28
===> 2a + b = - 26 ===> eqn 1
If P(x) divided by (x+2) then the reaminder P(-2) = -2
P(-2) = 2(-2)³ + 3(-2)³ + a(-2) + b = -2
===> 2(-8) + 3(4) - 2a + b = -2
===> -16 + 12 - 2a + b = -2
===> - 4 - 2a + b = -2
===> -2a + b = -2 + 4
===> -2a + b = 2 ===> eqn 2
from eqn 1 and 2
2a + b = -26
-2a + b = +02
______________
00 + 2b = -24
====> b = -24 / 2
====> b = -12
Substitute "b" value in eqn1
2a + ( -12 ) = -26
2a = -26 + 12
2a = -14
a = 14 / 2
a = -7 and b = -12
Step-by-step explanation:
P(x) = 2x³ + 3x² + ax + b
If P(x) divided by (x - 2) then the remainder
P(2) = 2(2)³ + 3(2)² + a(2) + b = 2
- 2*16 + 3*4 + 2a + b = 2
- 16 + 12 + 2a + b = 2
- 28 + 2a + b = 2
- 2a + b = 2 - 28
- ===> eqn ①
If P(x) divided by (x + 2) then the remainder P(-2) = 2(-2) ³ + 3(-2) ² + a(-2) + b = 2
- 2(-8) + 3(4) - 2a + b = -2
- - 16 + 12 - 2a + b = -2
- - 4 - 2a + b = -2
- - 2a + b = - 2 + 4
- ===> eqn ②
From eqn ① and ②
- 2a + b = - 26
- - 2a + b = + 02
- ____________
- 00 + 2b = -24
- b =
- b = - 12
Substitute "b" value in eqn ①
- 2a + (-12) = - 26
- 2a - 12 = - 26
- 2a = - 26 + 12
- 2a = - 14
- a =
- a = -7
Hence,
- a = -7 and b = -12