when a polynomial 2x³+3x²+ax+b is divided by x-2 leaves remainder 2 and x+2 leaves remainder -2 find a and b
Answers
2*8+3*4+2a+b=28+2a+b=2
x+2=0 so x=-2
now we will add the value of -2 in place of x
2*-8+3*4-2a+b=4-2a+b=-2
-4+2a-b=2
now adding both equations
-4+2a-b+28+2a+b=4
24+4a=4
a=-5
as 4-2a+b=-2
adding value of a
14+b=-2
b=-16
P(X) = 2x³ + 3x² + ax + b
P(2) = 0 and p(-2) = 0
if P(2) = (2)³ + 3(2)² + a(2) + b = 0
= 16 + 12 + 2a + b = 0
= 2a + b + 28 = 0
2a + b = -28 -------------(1)
if P(-2) = 0 = 2(-2)³ + 3(-2)² + a(-2) + b = 0
= 2(-8) + 3(4) -2a + b = 0
= -16 + 12 - 2a + b = 0
= -2a + b - 4 = 0
= -2a + b = 4 -----------------(2)
2a + b = -28
- 2a + b = 4
——————————
0 + 2B = -24
——————————
b =
b = -12
therefore 2a + b = -28
2a = -28 - b
2a -12 = -28
2a = -28 + 12
2a = -16
a =
a = -8