Math, asked by azizsyed120, 18 days ago

when a polynomial 2x³ + 3x²+ax +b is divided by ( x-2 ) leaves remainder 2, and ( x + 2 ) leaves remainder -2 find a and b ​

Answers

Answered by senboni123456
13

Answer:

Step-by-step explanation:

Given polynomial is  \sf{2{x}^{3}+3{x}^{2}+ax+b}[\tex]</p><p>→ When it is divided by  [tex]\left(x-2\right), leaves remainder 2

Then,  \sf{2{x}^{3}+3{x}^{2}+ax+b-2}[\tex]  is divisible by  [tex]\left(x-2\right)

So,

\left(x-2\right)  is a factor of  \sf{2{x}^{3}+3{x}^{2}+ax+b-2}[\tex].</p><p>So,</p><p>[tex]\sf{2\left(2\right)^3+3\left(2\right)^2+a\left(2\right)+b-2=0}

\sf{\implies16+12+2a+b-2=0}

\sf{\implies2a+b+26=0\,\,\,\,\,\,\,...(1)}

→ When it is divided by  \left(x+2\right), leaves remainder -2

Then,  \sf{2{x}^{3}+3{x}^{2}+ax+b+2}[\tex]  is divisible by  [tex]\left(x+2\right)

So,

\left(x+2\right)  is a factor of  \sf{2{x}^{3}+3{x}^{2}+ax+b+2}[\tex].</p><p>So,</p><p>[tex]\sf{2\left(-2\right)^3+3\left(-2\right)^2+a\left(-2\right)+b+2=0}

\sf{\implies\,-16+12-2a+b+2=0}

\sf{\implies\,-2a+b-2=0\,\,\,\,\,\,\,\,...(2)}

Adding (1) and (2), we get,

\sf{\implies\,2b+24=0}

\sf{\implies\,\boxed{b=-12}}

Putting the value of b in (1),

\sf{\implies2a-12+26=0}

\sf{\implies2a+14=0}

\sf{\implies\,\boxed{a=-7}}

Similar questions