Math, asked by chepurithanmayee5, 17 hours ago

when a polynomial 2x³+3x²+ax+b is dividedby (x-2) leaves remainder 2 and (x+2) leaves remainder -2.find a and b​

Answers

Answered by tomholland7373
0

Answer:

Tom Holland Here

#Celebritysurprise ;}

Answered by Anonymous
158

Answer:

Given that the equation

f(x) = x4 – 2x3 + 3x2 – ax +b

When f(x) is divided by (x+1) and (x-1) , the remainders are 19 and 5 respectively .

∴ f(-1) = 19 and f(1) = 5

(-1)4 – 2 (-1)3 + 3(-1)2 – a (-1) + b = 19

⇒ 1 +2 + 3 + a + b = 19

∴ a + b = 13 ——- (1)

According to given condition f(1) = 5

f(x) = x4 – 2x3 + 3x2 – ax

⇒ 14 – 2 3 + 3 2 – a (1) b = 5

⇒ 1 – 2 + 3 – a + b = 5

∴ b – a = 3 —— (2)

solving equations (1) and (2)

a = 5 and b = 8

Now substituting the values of a and b in f(x) , we get

∴ f(x) = x4 – 2x3 + 3x2 – 5x + 8

Also f(x) is divided by (x-2) so remainder will be f(2)

∴ f(x)= x4 – 2x3 + 3x2 – 5x + 8

⇒ f(2) = 16 – 2 × 8 + 3 × 4 – 5 × 2+ 8

= 16–16+12–10+8

= 10

Therefore, f(x) = x4 – 2x3 + 3x2 – ax +b when a=3 and b= 8 is 10.

Step-by-step explanation:

Hope it will helps you ❤️✨..

Similar questions