Math, asked by vedant8258, 1 month ago

when a polynomial 4x4-3x3+2x2-x+1 is divided by another polynomial x²+2 the remainder is ax+b find a and b​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Let assume that

\rm :\longmapsto\:f(x) =  {4x}^{4} -  {3x}^{3} +  {2x}^{2} - x + 1

and

\rm :\longmapsto\:g(x) =  {x}^{2} + 2

Now, We use method of Long Division to get remainder.

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\: \:  \:  \:  \:  \:  \:  {4x}^{2}  - 3x  - 2 \:  \:  \:  \: \:\:}}}\\ {{\sf{ {x}^{2} + 1}}}& {\sf{\: {4x}^{4} - {3x}^{3}+{2x}^{2} - x + 1\:}} \\{\sf{}}&\underline{\sf{\: \: \:  \:   \:  { - 4x}^{4} \:  \:  \:  \:  \:  - 4 {x}^{2}  \:   \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:}}\\{\sf{}}&{\sf{\:  \:   { - 3x}^{3} - {2x}^{2} - x + 1\:\:}}\\{\sf{}}&\underline{\sf{ \: { 3x}^{3}  \:  \:  \:  \:  \:  \:  \:  \:  \: + 3x \:\:}}\\{\sf{}}&{\sf{\:  \: \:  \:  \:  \:  \:  \:  \:  \: - {2x}^{2}  + 2x + 1\:\:}}\\{\sf{}}&\underline{\sf{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \: \: { 2x}^{3}  \:  \:  \:  \:  \:  \:  \:  \:  \: +2 \:\:}}\\{\sf{}}&\underline{\sf{\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\: 2x \:  + 3\:\: \:  \:  \:  \:  \:  \:  \:  \: }}\end{array}\end{gathered}\end{gathered}\end{gathered}

Hence,

We get

  • Remainder = 2x + 3

But it is given that when f(x) is divided by g(x), the remainder is ax + b.

So,

\rm :\longmapsto\:Remainder = ax + b = 2x + 3

So, on comparing we get

\rm :\longmapsto\:a = 2 \:  \:  \: and \:  \:  \: b = 3

Additional Information :-

\rm :\longmapsto\: \alpha , \beta  \: are \: zeroes \: of \: a {x}^{2} + bx + c, \: then

\red{ \boxed{ \rm{ \:  \alpha  +  \beta  =  -  \: \dfrac{b}{a} }}}

and

\red{ \boxed{ \rm{ \:  \alpha \beta  =  \: \dfrac{c}{a} }}}

\rm :\longmapsto\: \alpha , \beta, \gamma   \: are \: zeroes \: of \: a {x}^{3} + b {x}^{2}  + cx + d, \: then

\red{ \boxed{ \rm{ \:  \alpha  +  \beta  +  \gamma  =  -  \: \dfrac{b}{a} }}}

\red{ \boxed{ \rm{ \:  \alpha  \beta  +  \beta \gamma   +  \gamma \alpha   =  \: \dfrac{c}{a} }}}

\red{ \boxed{ \rm{ \:  \alpha \beta \gamma   =  -  \: \dfrac{d}{a} }}}

Similar questions