English, asked by anjali12302, 1 month ago

When a polynomial f(x) is divided by x-3 and x+6 , the respective remainders are 7 and 22. What is the remainder when f(x) is divided by (x-3)(x+6)​

Answers

Answered by neetusingh581981
10

Deltas are wetlands that form as rivers empty their water and sediment into another body of water. ... Deltas are wetlands that form as rivers empty their water and sediment into another body of water, such as an ocean, lake, or another river. Although very uncommon, deltas can also empty into land.

May it be helpful.

Mark me as brainliest.

Please drop some thanks.

Answered by Anonymous
4

Explanation:

=When a polynomial f(x) is divided by x-3 and x+6, the respective remainders are 7 and 22. What is the remainder when f(x) is divided by (x-3) (x+6)?

=Let’s look at a more general problem.

We know that the remainders when f(x) is divided by x−a and x−b are r and s respectively. What’s the remainder when f(x) is divided by (x−a)(x−b) ?

=Let’s assume first that a≠b and write px+q the sought remainder. This means that, for some polynomial g(x) ,

f(x)=(x−a)(x−b)g(x)+px+q(*)

=The hypotheses are equivalent to f(a)=r and f(b)=s , so we can evaluate (*) at a and b respectively, getting {pa+q=rpb+q=s

=This solves easily, by subtracting the second equation from the first, so p(a−b)=r−s and

p=r−sa−b

•Next

q=r−pa=r−r−sa−ba=as−bra−b

Hence the remainder is

r−sa−bx+as−bra−b

You can now substitute a=3 , b=−6 , r=7 and s=22 , getting

−53x+12

=Of course, if a=b the problem is underdetermined.

When ever a polynomial of degree N is divided by another polynomial of degree < N, the remainder will always be a polynomial ONE degree less than degree of denominator.

Remainder Theorem states that if a function f(x) is divided by (x-a), then f(a) is the remainder.

Taking cognizance of above two facts, we know the remainder when f(x) is divided by (x-3)(x+6) will be linear polynomial of degree ONE.

Let the remainder be represented by Ax + B

If f(x) is divided by x-3, remainder is 7

=> 3A + B = 7

If f(x) is divided by x-(-6), remainder is 22

=> -6A + B = 22

Solving the two equations, we get A = -15/9 & B = 12

So final remainder is -15x/9 + 12

Attachments:
Similar questions