Math, asked by Anonymous, 2 months ago

When a polynomial p(x) = x
⁴ – 2x³ + 3x² – ax + b is divisible by x – 1 and x + 1, the

remainders are 5 and 19 respectively. Find the remainder when p(x) is divided by x – 2.​

Answers

Answered by TheWonderWall
5

\large\sf\underline{Given}

When p(x) is divided by x-1 and x+1 the remainder are 5 and 19 respectively.

\tt\pink{∴\:p(1)=5}

\sf\: x⁴ -2x³ + 3x² - ax + b=5

\sf⟹\: 1⁴ - 2 \times 1³ + 3 \times 1² - a \times 1 + b=5

\sf⟹\: 1 -2 + 3  - a + b=5

\sf⟹\: -1 + 3  - a + b=5

\sf⟹\:  2 - a + b=5

\sf⟹\: - a + b=5-2

\tt\purple{\: - a + b=3-------(i)}

\tt\pink{∴\:p(-1)=19}

\sf\: x⁴ - 2x³ + 3x² - ax + b=19

\sf⟹\:(- 1)⁴ - 2 \times(- 1)³ + 3 \times (-1) ² – a \times(- 1) + b=19

\sf⟹\: 1 - 2 \times (-1) + 3  \times 1 + a + b=19

\sf⟹\: 1 + 2+3 + a + b=19

\sf⟹\:  3+3 + a + b=19

\sf⟹\: 6+ a + b=19

\sf⟹\:  a + b=19-6

\tt\purple{\:  a + b=13--------(ii)}

Adding the two equations :

\sf⇒\:( - a + b ) + ( a + b ) = 3 + 13

\sf⇒\:-a + b + a + b = 3 + 13

\sf⇒\:2b=16

\sf⇒\:b=\frac{16}{2}

\tt\red{\:⇒b=8}

Putting b = 8 and -a + b = 3 in equation (i) , we get

\tt\purple{\: - a + b=3}

\sf⇒\: -a + 8 = 3

\sf⇒\:-a=3-8

\sf⇒\:-a=-5

\tt\red{\:⇒a=5}

Putting the values of a and b in

\sf\:p(x) = x⁴ – 2x³ + 3x² – 5x + 8

The remainder when p(x) is divided by (x-2) is equal to p(2).

So, Remainder

\sf\:p(2) = x⁴ - 2x³ + 3x² - 5x + 8

\sf⟹\:p(2) = 2⁴ - 2 \times 2³ + 3 \times 2² - 5 \times 2 + 8

\sf⟹\:p(2) = 16 - 2 \times 8 + 3 \times 4 - 5 \times 2 + 8

\sf⟹\:p(2) = 16 - 16 + 12 - 10 + 8

\sf⟹\:p(2) =12 - 10 + 8

\sf⟹\:p(2) =2 + 8

\tt\pink{⟹\:p(2) =10}

Thnku ❣

Answered by helper00129
1

check the attachment....

Attachments:
Similar questions