Physics, asked by aalijah1899, 1 year ago

When a series combination of a coil of inductance L and a resistor of resistance R is connected across a 12 V-50 Hz supply, a current of 0.5.A flows through the circuit. The current differs in phase from applied voltage by π / 3 radian. Calculate the value of L and R.

Answers

Answered by Anonymous
0
d= volume of the oil drop/ area of the film

 

= 4/3 *pi* (0.025cm)^3/(pi* (10 cm)^2

 

= 2.08X10^-7 cm

Answered by akhileshpathak1998
0

Value of inductance 'L' = 12\sqrt{3}  H and the value of resistance R = 12 Ω.

Explanation:

Given:

            Emf 'E' = 12 V - 50 hz

               Current 'I' = 0.5 A

               Phase difference = \frac{\pi }{3} = 60^{o}

       

  We know that

                              ⇒ \frac{E}{\sqrt{R^{2} + L^{2}   } } = I

       

                             ⇒ R^{2}  + L^{2}  = \frac{E}{I}^{2}           ..........     (1)

            Now, we know, phase difference

                             ⇒  tan 60^{o} = \frac{L}{R}

                             ⇒  L = \sqrt{3}  R

Put above equation in equation (1)

                            ⇒  4 R^{2} = \frac{E}{I}^{2}

                            ⇒  R = \sqrt{\frac{12}{0.5\times2} }

                            ⇒  R = 12 Ω

Now inductance,                

                             ⇒ L = 12\sqrt{3} H

               

Similar questions