When a table tennis ball on a thread is made to touch the vibrating prong of a tuning fork the ball swings backwards and forward. How can this demonstration be used to explain how sound waves are made
Answers
Answer:
thetable tennis ball represents a particle in the air. when it touches the vibrating tuning fork it's pushed away like an air particle. as the particle and the tuning fork separate the region between it represents a area of low pressure.
Answer:
Everyday we hear sounds from various sources like humans, birds, bells, machines, vehicles, televisions, radios etc. Sound is a form of energy which produces a sensation of hearing in our ears. There are also other forms of energy like mechanical energy, heat energy, light energy etc. We have talked about mechanical energy in the previous chapters. You have been taught about conservation of energy, which states that we can neither create nor destroy energy. We can just change it from one form to another. When you clap, a sound is produced. Can you produce sound without utilising your energy? Which form of energy did you use to produce sound? In this chapter we are going to learn how sound is produced and how it is transmitted through a
medium and received by our ear.
Production of Sound
Activity-1:
• Take a tuning fork and set it vibrating by striking its prong on a rubber pad. Bring it near your ear.
• Do you hear any sound?
• Touch one of the prongs of the vibrating tuning fork with your finger and share your experience with your friends.
• Now, suspend a table tennis ball or a small plastic ball by a thread from a support [Take a big needle and a thread, put a knot at one end of the thread, and then with the help of the needle pass the thread through the ball]. Touch the ball gently with the prong of a vibrating tuning fork (Fig. 1).
• Observe what happens and discuss with your friends.
In the above activities we have produced sound by striking the tuning fork. We set the objects vibrating and produce sound. Vibration means a kind of rapid to and fro motion of an object. The sound of the human voice is produced due to vibrations in the vocal cords. When a bird flaps its wings, do you hear any sound? Think how the buzzing sound accompanying a bee is produced. A stretched rubber band when plucked vibrates and produces sound. If you have never done this, then do it and observe the vibration of the stretched rubber band
Propagation of Sound
Sound is produced by vibrating objects. The matter or substance through which sound is transmitted is called a medium. It can be solid, liquid or gas.
Sound moves through a medium from the point of generation to the listener. When an object vibrates, it sets the particles of the medium around it vibrating. The particles do not travel all the way from the vibrating object to the ear. A particle of the medium in contact with the vibrating object is first displaced from its equilibrium position. It then exerts a force on the adjacent particle.
As a result of which the adjacent particle gets displaced from its position of rest. After displacing the adjacent particle the first particle comes back to its original position. This process continues in the medium till the sound reaches your ear. The disturbance created by a source of sound in the medium travels through the medium and not the particles of the medium.
A wave is a disturbance that moves through a medium when the particles of the medium set neighbouring particles into motion. They in turn produce similar motion in others. The particles of the medium do not move forward themselves, but the disturbance is carried forward. This is what happens during propagation of sound in a medium, hence sound can be visualised as a wave.
Sound waves are characterised by the motion of particles in the medium and are called mechanical waves. Air is the most common medium through which sound travels. When a vibrating object moves forward, it pushes and compresses the air in front of it creating a region of high pressure. This region is called a compression (C), as shown in Fig. 2. This compression starts to move away from the vibrating object. When the vibrating object moves backwards, it creates a region of low pressure called rarefaction (R), as shown in Fig. 2. As the object moves back and forth rapidly, a series of compressions and rarefactions is created in the air. These make the sound wave that propagates through the medium. Compression is the region of high pressure and rarefaction is the region of low pressure. Pressure is related to the number of particles of a medium in a given volume. More density of the particles in the medium gives more pressure and vice versa. Thus, propagation of sound can be visualised as propagation of density variations or pressure variations in the medium.
Sound Needs a Medium to Travel
Sound is a mechanical wave and needs a material medium like air, water, steel etc. for its propagation.