When an interval is having both the cases of concentrating collector it is said to be?
Answers
Answer:
Any general setup for the conversion of the solar energy includes a receiver - a device that is able to convert the solar radiation into a different kind of energy. This can be either a heat absorber (to harvest thermal energy) or a photovoltaic cell (to convert light to electric energy). In the first case, the thermal radiation is absorbed to heat a medium (fluid), which transfers that absorbed energy to a generator. In the second case, light causes photovoltaic effect in the material of the solar cell, which generates electric current. In both of these situations, the amount of energy available for the conversion is only as much as the solar source supplies per unit area of the converter.
If we need more energy for use, we have two options. The first option is to increase the system scale (for example by increasing the number of receivers). In other words, we have to expand the plant area, which would involve additional cost for construction, service, maintenance, and may require additional land, more materials, etc. It has been done to some extent, but it is not a sufficient measure to meet the current energy demands. The second option is to concentrate the radiation flux. This can be achieved by placing a concentrator (usually some kind of optical device) between the light source (sun) and the receiver. By common terminology, a solar collector is a sunlight processing system that includes a concentrator and a receiver in its setup; it is also characterized by aperture - the cross sectional area through which sunlight accesses the system.
The most common concentrators are reflectors (mirrors) and refractors (lenses), which modify and redirect the incident sunlight beam.
Step-by-step explanation: