When does equality hold in the triangle inequality?
Answers
Answered by
0
my attempt :
|x+y|≤|x|+|y|
|x+y|≤|x|+|y|
this implies
(|x+y|
)
2
=(|x|+|y|
)
2
⇒(x+y
)
2
=(|x|+|y|
)
2
⇒
x
2
+2xy+
y
2
=|x
|
2
+2|x||y|+|y
|
2
(|x+y|)2=(|x|+|y|)2⇒(x+y)2=(|x|+|y|)2⇒x2+2xy+y2=|x|2+2|x||y|+|y|2
since
x
2
=|x
|
2
x2=|x|2
⇒2xy=2|x||y|⇒xy=|x||y|
⇒2xy=2|x||y|⇒xy=|x||y|
and
|x⋅y|=|x|⋅|y| iff x=y
|x⋅y|=|x|⋅|y| iff x=y
therefore
xy=|xy|⇒xx=|xx|⇒
x
2
=|x
|
2
⇒x=x
xy=|xy|⇒xx=|xx|⇒x2=|x|2⇒x=x
|x+y|≤|x|+|y|
|x+y|≤|x|+|y|
this implies
(|x+y|
)
2
=(|x|+|y|
)
2
⇒(x+y
)
2
=(|x|+|y|
)
2
⇒
x
2
+2xy+
y
2
=|x
|
2
+2|x||y|+|y
|
2
(|x+y|)2=(|x|+|y|)2⇒(x+y)2=(|x|+|y|)2⇒x2+2xy+y2=|x|2+2|x||y|+|y|2
since
x
2
=|x
|
2
x2=|x|2
⇒2xy=2|x||y|⇒xy=|x||y|
⇒2xy=2|x||y|⇒xy=|x||y|
and
|x⋅y|=|x|⋅|y| iff x=y
|x⋅y|=|x|⋅|y| iff x=y
therefore
xy=|xy|⇒xx=|xx|⇒
x
2
=|x
|
2
⇒x=x
xy=|xy|⇒xx=|xx|⇒x2=|x|2⇒x=x
Similar questions
History,
7 months ago
Social Sciences,
7 months ago