Math, asked by omlokhande12032004, 6 months ago

When each side of an equilateral triangle is increased by 4 cm, its area increases by 5√3 cm^2, then the length of the side of the original triangle is

Answers

Answered by Anonymous
5

Given

  • Side of an equilateral triangle is increased by 4 cm
  • Area increases by 5√3 cm²

Explanation:

Let the original side of the equilateral triangle be x and  {\sf{ A_1}}

 \circ{\boxed{\underline{\sf{ Area_{(Equilateral \ Triangle)} = \dfrac{ \sqrt{3} }{4} a^2 }}}} \\

Now, We can find desired results as:-

 {\sf{ A_1 = \dfrac{ \sqrt{3} }{4} x^2 }} \\

The new side of the Equilateral triangle is (x + 4)cm and  {\sf{ A_2 = \dfrac{ \sqrt{3} }{4} (x + 4)^2 \ cm^2 }} \\

According to Question,

 \colon\implies{\sf{ A_2-A_1 = 5 \sqrt{3} \ cm }} \\ \\ \\ \colon\implies{\sf{ \dfrac{ \sqrt{3} }{4} (x+4)^2 - \dfrac{ \sqrt{3}  }{4} (x)^2 = 5 \sqrt{3}  }} \\ \\ \\ \colon\implies{\sf{ \dfrac{  \cancel{ \sqrt{3} } }{4} \left( (x+4)^2 - x^2 \right) = 5 \ \cancel{ \sqrt{3} } }} \\ \\ \\ \colon\implies{\sf{ \dfrac{1}{4} (x^2 +16+8x-x^2) = 5 }} \\ \\ \\ \colon\implies{\sf{ \cancel{x^2} + 16 + 8x - \cancel{x^2} = 20 }} \\ \\ \\ \colon\implies{\sf{ 16 + 8x = 20 }} \\ \\ \\ \colon\implies{\sf{ 8x = 20-16}} \\ \\ \\ \colon\implies{\sf{ \cancel{ 8} \ x = \cancel{4} }} \\ \\ \\ \colon\implies{\boxed{\mathfrak\pink{ x = \dfrac{1}{2} cm }}} \\

Hence,

  • The length of the side of the original triangle is  {\sf{ \dfrac{1}{2} cm }}.
Similar questions