Math, asked by shivamsharma1083, 9 months ago

when faridabibi put oranges in some boxes she observed that if she would put 20 oranges more in each box 1 more box would be required. forming simultaneous equation let us calculate how many boxes and oranges did faridabibi have​

Answers

Answered by anjali18102005
1

Answer: Let the no of oranges be x and the no of boxes be y

So, according to given condition

(x+20)(y-3)=(x-5)(y+1), equating total oranges in each case

=>xy+20y-3x-60=xy-5y+x-5

=>25y-4x-55=0

=>4x-25y+55=0 is the required equation

Answered by shariquekeyam
3

\huge{\underline{\mathtt{\red{Q}\pink{U}\green{E}\blue{S}\purple{T}\orange{I}\blue{O}{N}}}}

\sf When \:faridabibi \:put \:oranges \:in\: some\: boxes \:she\: \sf observed\: that\: if \:she\: would\: put\: 20\: oranges\: more\: in \:each\: \sf box , \:then\: 3\: boxes \:would\: be\: less \:required.\: But \: if \sf she  \:would \:put\: 5\: oranges \:less i\:n \:each \:box, 1\: \sf more  \: box  \: would \:be\: required \:forming\: simultaneous\: \sf equation  \:calculate \:how \:many \:boxes \:and oranges\: did \sf \:Fairdibibi \:have ?

\huge{\underline{\mathtt{\red{T}\pink{O}\green{\:F}\blue{I}\purple{N}\orange{D}}}}

\sf Total  \: no. \:of\: boxes

\sf Total\: no.\: of \:oranges

\huge{\underline{\mathtt{\red{S}\pink{O}\green{L}\blue{U}\purple{T}\orange{I}\red{O}\pink{N}}}}

\sf let\: the \:number\: of\: oranges\: be\: x \:and \:number \:of \:boxes\: be\: y

\sf so,\: total \:no.\: of \:oranges= xy

\sf in \:case - 1

\sf no.\:of \:oranges \:in \:each\: box = x+20

\sf no.\: of \:boxes = y-3

\sf\blue{Point \:to \:be \:noted:}

\sf\ Total \:Number\: of\: Boxes\:

\ = \dfrac{Total \:Number\: of \:Oranges}{Number\: of \:oranges\: in\: each\: box}

\ ⟹(y-3)= \dfrac{xy}{x+20}

\sf ⟹(x+20)(y-3) = (xy)

\sf ⟹xy-3x+20y-60=xy

\sf ⟹xy-xy-3x+20y=60

\sf ⟹-3x+20y=60 -----equation(i)

\sf in case -2

\sf no.\: of \:oranges\: in\: each\: case = x-5

\sf no. \:of\: boxes = y+1

\sf Total\: Number\: of \:Boxes

\ = \dfrac{Total \:Number \:of \:Oranges}{Number\: of\: oranges\: in\: each\: box}

\ (y+1) = \dfrac{xy}{x-5}

\sf ⟹(x-5)(y+1)= xy

\sf ⟹xy+x-5y-5=xy

\sf ⟹xy-xy+x-5y-5=0

\sf ⟹x-5y=5 ------ equation (ii)

\sf from\: both \:equations\: (i) \:and\: (ii)

\sf multiplying \:equation \:(ii)\: by \:3

\sf -3x+20y=60

\sf 3x-15y= 15

____________ \sf (by \:adding)

\sf 0x+5y=75

\sf ⟹y=15

\sf putting \:the \:value\: of\: y\: in\: equation\: (ii) ,we \:get

\sf x-5×15=5

\sf ⟹x=80

\sf therefore,  \:no. \:of\: oranges \:in\: each\: box\:= 80 \:and \:number\: of\: boxes = 15

Similar questions