When one end of organ pipe is closed, then the frequency of stationary waves of any harmonic in it is given by: (B) 45° (C) 90° (D) 180° (A) 0°
Answers
Answer:
d) 180
Explanation:
Answer:
When one end of the organ pipe exists closed, then the frequency of stationary waves of any harmonic in it stands provided by (D) 180° .
Explanation:
Frequency stands for the number of happenings of a repeating event per unit of time. It is also periodically directed to as temporal frequency to emphasize the difference between spatial frequency, and ordinary frequency to highlight the contrast to angular frequency. The term frequency directs to the number of waves that pass a fixed point in a unit period. It also represents the numeral of cycles or vibrations undergone during one unit of the moment by a body in periodic motion.
A standing wave, also named stationary wave, mixture of two waves moving in opposite directions, each containing the same amplitude and frequency. The phenomenon exists as the result of interference; that is, when waves exist superimposed, their energies exist either added together or canceled out. A harmonic exists a wave or signal whose frequency exists as an integral (whole number) multiple of the frequency of the same reference signal or wave. As a region of the harmonic series, the term can also direct the ratio of the frequency of such a signal or wave to the frequency of the connection signal or wave.
Hence, When one end of the organ pipe exists closed, then the frequency of stationary waves of any harmonic in it stands provided by (D) 180° .
#SPJ2