History, asked by queenzamzam01, 6 months ago

When people feared for their savings in their bank, they rushed to withdraw their money in what became known as a bank run. What caused bank runs at the onset of the Depression?
a.Banks implemented an extremely high discount rate.
b.People felt banks were safe so they put all of their money in them for security.
c.People withdrew their money on a first-come, first serve basis and many were left with nothing

Answers

Answered by MsInnocent
3

\large\underline\mathfrak{\pink{GIVEN,}}

\dashrightarrow \red{ Perimeter\:of\: triangle= 450m}

\begin{lgathered}\dashrightarrow \orange{ratios\:of\:the\:sides\:of\:triangles\:are }\\ \dashrightarrow \pink{13:12:5}\end{lgathered}

\large{\boxed{\bf{ \mathfrak{\blue{FORMULA,}}}}}

\rm{\boxed{\sf{ \large{\circ}\:\: area\:of\:triangle_{(herons\:fomula)}= \sqrt{s(s - a)(s - b)(s - c)} \:\: \large{\circ}}}}

\large\underline\mathfrak{\pink{TO\:FIND,}}

\dashrightarrow \green{Area\:of\:triangle\:using\:herons\: formula.}

\large\underline\mathfrak{\purple{SOLUTION,}}

\therefore \green{let\:the\:constant\:be\:'x'\:m}

\begin{lgathered}\dashrightarrow \red{sides\:of\:triangle\: are,}\\ \dashrightarrow \blue{a=13x} \\ \purple{b= 12x }\\ \green{c= 5x }\end{lgathered}

\begin{lgathered}\dashrightarrow \red{sides\:of\:triangle\: are,}\\ \dashrightarrow \blue{a=13x} \\ \purple{b= 12x }\\ \green{c= 5x }\end{lgathered}

\therefore \orange{finding\:the\:value\:of\:x.}

\dashrightarrow \purple{perimeter\:of\:triangle= a+b+c}

\dashrightarrow \blue{13x+12x+5x=450}

\implies \green{30x=450}

\implies \green{x= \dfrac{450}{30} }

\implies \green{x = \cancel\dfrac{450}{30}}

\implies \green{x=15}

\rm{\boxed{\bf{ \:\: x=15 \:\: }}}

\begin{lgathered}\dashrightarrow \red{x=15}\\ \pink{a= 13x= 13\times 15= 195m}\\ \blue{\dashrightarrow b=12x= 12\times 15 = 180m}\\ \dashrightarrow \purple{c=5x= 5\times 15= 75m}\end{lgathered}

NOW, FINDING AREA OF TRIANGLE BY HERONS FORMULA,

\therefore \orange{s= \dfrac{a+b+c}{2}}

\therefore \orange{s= \dfrac{a+b+c}{2}}

50 points

\implies \orange{ s= \dfrac{195+180+75}{2}}

\implies \orange{s= \dfrac{450}{2}}

\implies \orange{s= 225}

\bf\dashrightarrow \red{area\:of\:triangle_{(herons\:fomula)}= \sqrt{s(s - a)(s - b)(s - c)}}

\implies \purple{\sqrt{225(225-195)(225-180)(225-75)}}

\implies \purple{ \sqrt{225(30)(45)(150)}}

\implies \purple{\sqrt{ 225(1350)(150)}}

\implies \purple{15\sqrt{202500}}

\implies \purple{15 \times 450}

\implies \purple{6750m^2}

\rm{\boxed{\sf{ \large{\circ}\:\:area\:of\:triangle= 6750m^2 \:\: \large{\circ}}}}

\rm\underline\mathfrak{\pink{AREA\:OF\:TRIANGLE\:IS\:6750m^2.}}

\large\underline\mathfrak{\pink{GIVEN,}}</p><p>\dashrightarrow \red{ Perimeter\:of\: triangle= 450m}</p><p>\begin{lgathered}\dashrightarrow \orange{ratios\:of\:the\:sides\:of\:triangles\:are }\\ \dashrightarrow \pink{13:12:5}\end{lgathered}</p><p>\large{\boxed{\bf{ \mathfrak{\blue{FORMULA,}}}}}</p><p>\rm{\boxed{\sf{ \large{\circ}\:\: area\:of\:triangle_{(herons\:fomula)}= \sqrt{s(s - a)(s - b)(s - c)} \:\: \large{\circ}}}}</p><p>\large\underline\mathfrak{\pink{TO\:FIND,}}</p><p>\dashrightarrow \green{Area\:of\:triangle\:using\:herons\: formula.}</p><p>\large\underline\mathfrak{\purple{SOLUTION,}}</p><p>\therefore \green{let\:the\:constant\:be\:'x'\:m}</p><p>\begin{lgathered}\dashrightarrow \red{sides\:of\:triangle\: are,}\\ \dashrightarrow \blue{a=13x} \\ \purple{b= 12x }\\ \green{c= 5x }\end{lgathered}</p><p></p><p>\begin{lgathered}\dashrightarrow \red{sides\:of\:triangle\: are,}\\ \dashrightarrow \blue{a=13x} \\ \purple{b= 12x }\\ \green{c= 5x }\end{lgathered}</p><p></p><p>\therefore \orange{finding\:the\:value\:of\:x.}</p><p>\dashrightarrow \purple{perimeter\:of\:triangle= a+b+c}</p><p>\dashrightarrow \blue{13x+12x+5x=450}</p><p>\implies \green{30x=450}</p><p>\implies \green{x= \dfrac{450}{30} }</p><p>\implies \green{x = \cancel\dfrac{450}{30}}</p><p>\implies \green{x=15}</p><p>\rm{\boxed{\bf{ \:\: x=15 \:\: }}}</p><p>\begin{lgathered}\dashrightarrow \red{x=15}\\ \pink{a= 13x= 13\times 15= 195m}\\ \blue{\dashrightarrow b=12x= 12\times 15 = 180m}\\ \dashrightarrow \purple{c=5x= 5\times 15= 75m}\end{lgathered}</p><p>NOW, FINDING AREA OF TRIANGLE BY HERONS FORMULA,</p><p>\therefore \orange{s= \dfrac{a+b+c}{2}}</p><p></p><p></p><p>\therefore \orange{s= \dfrac{a+b+c}{2}}</p><p>50 points</p><p>\implies \orange{ s= \dfrac{195+180+75}{2}}</p><p>\implies \orange{s= \dfrac{450}{2}}</p><p>\implies \orange{s= 225}</p><p>\bf\dashrightarrow \red{area\:of\:triangle_{(herons\:fomula)}= \sqrt{s(s - a)(s - b)(s - c)}}</p><p>\implies \purple{\sqrt{225(225-195)(225-180)(225-75)}}</p><p>\implies \purple{ \sqrt{225(30)(45)(150)}}</p><p>\implies \purple{\sqrt{ 225(1350)(150)}}</p><p>\implies \purple{15\sqrt{202500}}</p><p>\implies \purple{15 \times 450}</p><p>\implies \purple{6750m^2}</p><p>\rm{\boxed{\sf{ \large{\circ}\:\:area\:of\:triangle= 6750m^2 \:\: \large{\circ}}}}</p><p>\rm\underline\mathfrak{\pink{AREA\:OF\:TRIANGLE\:IS\:6750m^2.}} \:  \:  \:

Similar questions