Math, asked by sumankohar03, 1 month ago

when polynomial 2x3+3x2+3x-a is divided by x2- 1 the remainder is 5x+ b then value of √a+b+6 is​

Answers

Answered by jhumkipaul605
0

568890078990009008009990

Answered by hukam0685
0

Step-by-step explanation:

Given:

when polynomial 2x³+3x²+3x-a is divided by x²- 1 the remainder is 5x+ b.

To find: then value of √(a+b+6) is?

Solution: Divide 2x³+3x²+3x-a by x²-1

 {x}^{2}  - 1)2 {x}^{3}  + 3 {x}^{2} + 3x - a(2x + 3 \\ 2 {x}^{3}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  - 2 {x} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ ( - ) \: \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ( + ) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  -  -  -  -  -  -   -  -  -  - -  \\ 3 {x }^{2}  + 5x - a \\ 3 {x}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  - 3 \\ ( - ) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ( + ) \:  \:  \:  \:  \:  \\  -  -  -  -  -  -  -  \\ 5x - a + 3\\  -  -  -  -  -  -  -

Actually remainder is 5x-a+3

ATQ,remainder is 5x+b.

So, we can say that (on comparison both remainders)

b= -a+3

To find the value of √(a+b+6):

Put the value of b here

  \sqrt{a + b + 6 }  = \sqrt{a - a + 3 + 6}  \\  \\ \sqrt{a + b + 6 } =  \sqrt{3 + 6}  \\  \\ \sqrt{a + b + 6 } =  \sqrt{9}  \\  \\ \bold{\pink{\sqrt{a + b + 6 } = ±3}} \\  \\

Final answer:

Value of √(a+b+6)=±3

Hope it helps you.

To learn more on brainly:

1) x³-3x²-4x=0 find x from this question.

https://brainly.in/question/32818904

2)if x^3+ax^2-bx+10 is divisible by x^2-3x+2,find the values of a and b

https://brainly.in/question/3833520

Similar questions