Math, asked by ape44, 11 months ago

when sec\theta = 13/12,then find all trigonometric ratios. ​

Answers

Answered by rajsingh24
29

SOLUTION:-

______________________

=> In ΔABC,

=> <ABC= 90° , <ACB = θ

=> sec θ = AC/BC

=> .°. sec θ= 13/12

=> .°. AC/BC = 13/12

=> .°. AC = 13k and BC = 12k

=> in Right Δ ABC,

=> AC² = AB²+BC² -----> ( According to Pythagoras theorem)

=> (13k) ² = (AB)² + (12k)²

=> 169k² = AB² + 144k²

=> AB² = 169k² - 144k²

=> AB²= 25k²

=> √(AB)² = √(25k²)------> ( take square root On both side)

=> AB = 25k.

_______________________

=> Now, find all trigonometric ratios ,

=> (1) sinθ = AB/AC = 5k/13k = 5/13.

=> (2) cosθ = BC/AC = 12k/13k = 12/13.

=> (3) tanθ = AB/BC = 5k/12k = 5/12.

=> (4) cosecθ = AC/AB = 13k/5k = 13/5.

=> (5) secθ = AC/BC = 13k/12k = 13/12.

=> (6) cotθ = BC/AB = 12k/5k = 12/5.

________________________

Answer:-

=> sinθ = 5/13 , cosθ = 12/13 , tanθ = 5/12 ,cosecθ= 13/5 , secθ = 13/12 , cotθ = 12/5.

________________________

Attachments:

Steph0303: Great Answer :)
Answered by Anonymous
17

Solution :

 \sf \sec \theta =  \frac{13}{12}  =  \frac{ac}{bc} \\  \\ \sf ac =  13 \\ \sf bc = 12

Using Pythagoras theorem :

 \sf {ac}^{2}  =  {ab}^{2}  +  {bc}^{2}  \sf \\  \\  \sf {13}^{2}  =  {ab}^{2}  +  {12}^{2}  \\  \\  \sf 169 =  {ab}^{2}  + 144 \\ \\  \sf ab =  \sqrt{25}  \\  \\  \sf ab = 5

___________________

 \sf \sin \theta  =  \frac{ab}{ac}  \\  \\  \boxed{  \sf \sin \theta =  \frac{5}{13}}

___________________

 \sf \cos \theta =  \frac{bc}{ac}  \\  \\  \boxed{\sf \cos \theta =  \frac{12}{13} }

___________________

 \sf \tan \theta =  \frac{ab}{bc}  \\  \\  \boxed{\sf \tan \theta =  \frac{5}{12}}

___________________

 \sf  \cosec  \theta =  \frac{ac}{ab}  \\  \\ \boxed{ \sf  \cosec  \theta =  \frac{13}{5} }

___________________

 \sf  \cot  \theta =  \frac{bc}{ab}  \\  \\  \boxed{\sf  \cot  \theta =  \frac{12}{5}}

Similar questions