when sec = 13/12,then find all trigonometric ratios.
Answers
SOLUTION:-
______________________
=> In ΔABC,
=> <ABC= 90° , <ACB = θ
=> sec θ = AC/BC
=> .°. sec θ= 13/12
=> .°. AC/BC = 13/12
=> .°. AC = 13k and BC = 12k
=> in Right Δ ABC,
=> AC² = AB²+BC² -----> ( According to Pythagoras theorem)
=> (13k) ² = (AB)² + (12k)²
=> 169k² = AB² + 144k²
=> AB² = 169k² - 144k²
=> AB²= 25k²
=> √(AB)² = √(25k²)------> ( take square root On both side)
=> AB = 25k.
_______________________
=> Now, find all trigonometric ratios ,
=> (1) sinθ = AB/AC = 5k/13k = 5/13.
=> (2) cosθ = BC/AC = 12k/13k = 12/13.
=> (3) tanθ = AB/BC = 5k/12k = 5/12.
=> (4) cosecθ = AC/AB = 13k/5k = 13/5.
=> (5) secθ = AC/BC = 13k/12k = 13/12.
=> (6) cotθ = BC/AB = 12k/5k = 12/5.
________________________
Answer:-
=> sinθ = 5/13 , cosθ = 12/13 , tanθ = 5/12 ,cosecθ= 13/5 , secθ = 13/12 , cotθ = 12/5.
________________________
Solution :
Using Pythagoras theorem :
___________________
___________________
___________________
___________________
___________________