Math, asked by aaravjain2986, 1 day ago

When simplified (x-1 + y-1)-1 is equal to
xy
а) ху
b) x + y
c)
d)*+y
x + y
xy​

Answers

Answered by Anonymous
19

If we simply (x-1 + y-1)-1 then it would be equal to x + y - 3. Let's see how.

\implies (x-1 + y-1)-1 \\ \\ \implies x-1 + y-1-1 \\ \\ \implies x+(-1-1-1)+y \\ \\ \implies x+(-3)+y \\ \\ \implies x - 3 + y \\ \\ \implies \boxed{x + y - 3}

Hence, if we simply (x-1 + y-1)-1 we will get x + y - 3.

Answered by Anonymous
48

Answer:

Appropriate Question :-

\leadsto \sf When\: simplified\: (x^{- 1} + y^{- 1})^{- 1}\: is\: equal\: to\: ?\\

Options :

\bullet \: \: \sf a)\: xy

\bullet \: \: \sf b) x + y

\bullet \: \: \sf c) \dfrac{xy}{x + y}

\bullet \: \: \sf d) \dfrac{1}{xy}

Given :

\leadsto \sf (x^{- 1} + y^{- 1})^{- 1}

To Find :-

\leadsto Simplified.

Solution :-

\dashrightarrow \bf (x^{- 1} + y^{- 1})^{- 1}

\dashrightarrow \sf \bigg\{\dfrac{1}{x^{- 1} + y^{- 1}}\bigg\}

\dashrightarrow \sf \Bigg\{\dfrac{1}{\dfrac{1}{x} + \dfrac{1}{y}}\Bigg\}

\dashrightarrow \sf \Bigg\{\dfrac{1}{\dfrac{x + y}{xy}}\Bigg\}

\dashrightarrow \sf \dfrac{xy}{x + y} \times \dfrac{1}{1}

\dashrightarrow \sf\boxed{\bold{\red{\dfrac{xy}{x + y}}}}

\therefore \sf\bold{\purple{ The\: value\: of\: (x^{- 1} + y^{- 1})^{- 1}\: is\: \dfrac{xy}{x + y}\: .}}

Hence, the correct options is option no c) xy/x + y .

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

EXTRA INFORMATION ON INDICE LAW :-

\bigstar \: \: \bf x^0 =\: 1 [where x 0]

\bigstar \: \: \bf x^{- n} =\: \dfrac{1}{x^n}

\bigstar \: \: \bf x^n .\: x^m =\: x^{n + m}

\bigstar \: \: \bf \dfrac{x^n}{x^m} =\: x^{n - m}

\bigstar \: \: \bf (x^n)^m =\: x^{m . n}

\bigstar \: \: \bf x^{\frac{n}{m}} =\: \sqrt[m]{x^n}

Similar questions