When t = 0, a particle at (1,0,0) moves towards (4,4,12) with a constant speed of 65 ms. The position of the particle is measured in meter and the time in second. Assume constant velocity, the position of the particle for t=2 s is
Answers
velocity change in accelration
Answer:
distance between points(1,0,0) and (4,4,12)=√(4-1)²+(4-0)²+(12-0)²=√3²+4²+12²
=√9+16+144=√169=13 units
velocity=65m/sec
in 2 sec ,distance covered=65×2=130m
let (x,y,z) be the position of particle after t=2 sec
then,√(x-1)²+(y-0)²+(z-0)²=130
√x²+1-2x+y²+z²=130
x²+y²+z²-2x=130²-1
x²+y²+z²-2x=16900-1=16899
x²+y²+z²=16899+2x
√(x-4)²+(y-4)²+(z-12)²=130-13
x²+16-8x+y²+16-8y+z²+144-24z=127²
x²+y²+z²-8x-8y-24z+176=16129
-8(x+y+3z)+16899+2x+176=16129
-8(x+y+3z)+2x=16129-17075
-6x-8y-24z=-946
-2(3x+4y+12z)=-946
3x+4y+12z=-946/-2=473...(1)
equation of line passing through (x1,y1,z1) and(x2,y2,z2) is (x-x1)/(x2-x1)=(y-y1)/y2-y1)=(z-z1)/z2-z1
(x-1)/(4-1)=(y-0)/(4-0)=(z-0)/(12-0)
(x-1)/3=y/4=z/12
now,y/4=(x-1)/3
y=4(x-1)/3=(4x-4)/3
z/12=(x-1)/3
z=4(x-1)=4x-4
put value of y,z in (1)
3x+4(4x-4)/3+12(4x-4)=473
3x+16x-16+48x-48=473
67x=473+64
x=537/67
y=(4(537/67)-4)/3
=2148-268/201=1880/201
z=4(537/66)-4=2148-268/67=1880/67
so (x,y,z)=(537/67,1880/201,1880/67) is the position of particle after t=2 sec