Math, asked by deepak1287, 8 months ago

When t ^ 2 - 1 exactly divides the polynomial P(t)=a 1 t^ 4 +a 2 t^ 3 +a 3 t^ 2 +a 4 t+a 5 then prove a 1 +a 3 +a 5 =a 2 +a 4 =0​

Answers

Answered by amitnrw
3

Given :   t² - 1 exactly divides the polynomial P(t)=a₁t⁴ +a₂ t³ +a₃ t² +a₄ t +a₅  

To Find : prove a₁ +a₃ +a₅ =a₂ +a₄ =0

Solution:

P(t)=a₁t⁴ +a₂ t³ +a₃ t² +a₄ t +a₅  

t² - 1 = (t + 1)(t - 1)

Hence 1 , -1  are zeroes

P(-1) = 0

a₁(-1)⁴ +a₂(-1)³ +a₃ (-1)² +a₄(-1) +a₅  

=> a₁ - a₂  +a₃ - a₄  +a₅   = 0

=> a₁ +a₃ +a₅  = a₂ +a₄

P(1) = 0

=> a₁  +a₂  +a₃ +a₄  +a₅   = 0

=>  (a₁ +a₃ +a₅ )+ (a₂ +a₄ ) = 0

=> (a₂ +a₄ ) + (a₂ +a₄ ) = 0

=> 2  (a₂ +a₄ ) = 0

=> (a₂ +a₄ ) = 0

a₁ +a₃ +a₅  = a₂ +a₄ = 0

QED

Hence proved

Learn More;

on dividing x3-3x2+x+2 by a polynomial g(x),the quotient and ...

brainly.in/question/3135153

Divide 9x^3+3x^2-5x+7 by (3x-1) write the quotient and remainder ...

brainly.in/question/6190809

Divide the polynomial (6x³ + 11x² - 10x - 7) by the binomial (2x + 1 ...

brainly.in/question/4743553

Similar questions