when
the value of x is
Answers
GIVEN :-
- √(2x + 1 ) + √(3x + 4) = 7
TO FIND :-
- The value of x.
SOLUTION :-
→ √(2x+1) + √(3x+4) = 7
→ √(2x+1) = 7 - √(3x+4)
★ Squaring on both sides ★
→ 2x + 1 = 49 + 3x + 4 - 14√(3x + 4)
→ 2x + 1 = 53 + 3x - 14√(3x+4)
→ 14√(3x+4) = x + 52
★ Again squaring on both sides ★
→ 14²(3x+4) = x² + 52² + 104x
→ 196(3x+4) = x² + 2704 + 104x
→ 588x + 784 = x² + 2704 + 104x
→ x² - 484 x + 1920 = 0
→ x² - 4x - 480x + 1920 = 0
→ x ( x - 4 ) - 480 ( x - 4 ) = 0
→ ( x - 4 ) ( x - 480 ) = 0
→ x = 4 & x = 480
Hence the required value of x is 4 and 480 when √(2x + 1 ) + √(3x + 4) = 7.
Given :-
To Find :-
Solution :-
√(2x + 1) + √(3x + 4) = 7
√(2x + 1) = 7 - √(3x + 4)
★ Squaring on both sides ★
2x + 1 = 49 + 3x + 4 - 14√(3x + 4)
2x + 1 = 53 + 3x - 14√(3x + 4)
14√(3x + 4) = x + 52
★ Squaring on both sides ★
14² (3x + 4) = x² + 52² + 104x
196 (3x + 4) = x² + 2704 + 104x
588x + 784 = x² + 2704 + 104x
x² - 484x + 1920 = 0
x (x - 4) - 480 (x - 4) = 0
(x - 4) (x - 480) = 0
x = 4 & x = 480
Hence, the value of x is 4 & 480 when √(2x + 1) + √(3x + 4) = 7.