When the angular velocityof body change from 16 rad/s to 30 rad/s the angular momentum changes by 100 kgmsquar/s what is the change in KE of the body.
Answers
Given :
Initial angular velocity (ω1) = 16 rad/s
Final angular velocity (ω2) = 30 rad/s
Change in momentum (Δp) = 100 kg.m²/s
To Find :
The change in K.E of the body.
Solution :
We know that,
Change in momentum = I(ω2) - I(ω1)
[ Put the values ]
⇒ Δp = I(ω2 - ω1 )
⇒ 100 = I(30 - 16)
⇒ 100 = I(14)
⇒ I = 100/14
⇒ I = 7.1 kgm²
Now, we need to find change in kinetic energy of the body.
So, change in kinetic energy = ¹/2 × I(ω2)² - ¹/2 × I(ω1)²
[ Put the values ]
⇒ ΔK.E = ¹/2 × 7.1 × 30² - ¹/2 × 7.1 × 16²
⇒ ΔK.E = 3.55 × 900 - 3.55 × 256
⇒ ΔK.E = 3195 - 908.6
⇒ ΔK.E = 2286.4 J
∴ The change in K.E of the body is 2286.4 Joule.
Question :
When the angular velocityof body change from 16 rad/s to 30 rad/s the angular momentum changes by 100 kgmsquar/s what is the change in KE of the body.
Answer :
The change in K.E of the body is 2286.4 Joule.
Given :
Angular velocityof body change from 16 rad/s to 30 rad/s.
The angular momentum changes by 100 kgmsquare/s.
Have to Find :
What is the change in KE of the body?
Calculations :
As we all know the formula;
From given we know :
(Δp) = 100 kg.m²/s
(ω1) = 16 rad/s
(ω2) = 30 rad/
Here,
- " (Δp) " Change in momentum
- " (ω1) " Initial angular velocity
- " (ω2) " Final angular velocity
Now, change in momentum = I(ω2) - I(ω1)
Simply substituting the values in the above formula :-
↠ Δp = I(ω2 - ω1 )
↠ 100 = I(30 - 16)
↠ 100 = I(14)
↠ I = 100/14
↠ I = 7.1 kgm²
Now , we have all the required values, let's find out kinetic energy now :
↠ Change in kinetic energy = 1/2 × I(ω2)² - 1/2 × I(ω1)²
↠ ΔK.E = 1/2 × 7.1 × 30² - 1/2 × 7.1 × 16²
↠ ΔK.E = 3.55 × 900 - 3.55 × 256
↠ ΔK.E = 3195 - 908.6
↠ ΔK.E = 2286.4 J
Hence,
ΔK.E = 2286.4 J is the required Answer .