when the axes are rotated through an angle 30 find the new coordinates of the following point (-2,4)
Answers
x' = x cos(θ) + y sin(θ)
y' = - x sin(θ) + y cos(θ)
So,
x' = -2(√3/2) + 4(1/2) = 2 - √3
y' = 2(1/2) + (4)(√3/2) = 1 + 2√3
New coordinates = (2 - √3, 1 + 2√3)
Answer:
The new coordinates are (x',y') = (2-√3, 1+2√3)
Step-by-step explanation:
Given coordinates (-2,4)
The angle of rotation θ = 30°
Here we need to find new coordinates of the given point (-2,4)
Let the coordinates (x,y) are rotated through an angle θ then the coordinates of new points are (x', y')
where x' = x cos θ + y sin θ
y' = - x sin θ + y cos θ
Let given points (-2,4) = (x,y); rotated through an angle θ = 30°
Therefore, new coordinates
⇒ x' = (-2) cos 30° + 4 sin 30°
= [ ∵ cos 30° = , sin 30° = ]
= - √3 + 2
= 2-√3
⇒ y' = -(-2) sin 30° + 4 cos 30°
=
= 1 + 2√3
The new coordinates are (x',y') = (2-√3, 1+2√3)
#SPJ3