When the axes are rotated through an angle
, find the transformed equation of x cos
+ y sin
=p
Answers
Ans.
By rotation of axes,
By rotation of axes,x=x
By rotation of axes,x=x 1
By rotation of axes,x=x 1
By rotation of axes,x=x 1 cosα−y
By rotation of axes,x=x 1 cosα−y 1
By rotation of axes,x=x 1 cosα−y 1
By rotation of axes,x=x 1 cosα−y 1 sinα
By rotation of axes,x=x 1 cosα−y 1 sinαy=x
By rotation of axes,x=x 1 cosα−y 1 sinαy=x 1
By rotation of axes,x=x 1 cosα−y 1 sinαy=x 1
By rotation of axes,x=x 1 cosα−y 1 sinαy=x 1 sinα+y
By rotation of axes,x=x 1 cosα−y 1 sinαy=x 1 sinα+y 1
By rotation of axes,x=x 1 cosα−y 1 sinαy=x 1 sinα+y 1
By rotation of axes,x=x 1 cosα−y 1 sinαy=x 1 sinα+y 1 cosα
By rotation of axes,x=x 1 cosα−y 1 sinαy=x 1 sinα+y 1 cosαxcosα+ysinα=P..........(given)
By rotation of axes,x=x 1 cosα−y 1 sinαy=x 1 sinα+y 1 cosαxcosα+ysinα=P..........(given)⇒x
By rotation of axes,x=x 1 cosα−y 1 sinαy=x 1 sinα+y 1 cosαxcosα+ysinα=P..........(given)⇒x 1
By rotation of axes,x=x 1 cosα−y 1 sinαy=x 1 sinα+y 1 cosαxcosα+ysinα=P..........(given)⇒x 1
By rotation of axes,x=x 1 cosα−y 1 sinαy=x 1 sinα+y 1 cosαxcosα+ysinα=P..........(given)⇒x 1 (cos
By rotation of axes,x=x 1 cosα−y 1 sinαy=x 1 sinα+y 1 cosαxcosα+ysinα=P..........(given)⇒x 1 (cos 2
By rotation of axes,x=x 1 cosα−y 1 sinαy=x 1 sinα+y 1 cosαxcosα+ysinα=P..........(given)⇒x 1 (cos 2 α+sin
By rotation of axes,x=x 1 cosα−y 1 sinαy=x 1 sinα+y 1 cosαxcosα+ysinα=P..........(given)⇒x 1 (cos 2 α+sin 2
By rotation of axes,x=x 1 cosα−y 1 sinαy=x 1 sinα+y 1 cosαxcosα+ysinα=P..........(given)⇒x 1 (cos 2 α+sin 2 α)+y(sinαcosα−cosαsinα)=P..............(substitute the values of x and y)
By rotation of axes,x=x 1 cosα−y 1 sinαy=x 1 sinα+y 1 cosαxcosα+ysinα=P..........(given)⇒x 1 (cos 2 α+sin 2 α)+y(sinαcosα−cosαsinα)=P..............(substitute the values of x and y) x
By rotation of axes,x=x 1 cosα−y 1 sinαy=x 1 sinα+y 1 cosαxcosα+ysinα=P..........(given)⇒x 1 (cos 2 α+sin 2 α)+y(sinαcosα−cosαsinα)=P..............(substitute the values of x and y) x 1
By rotation of axes,x=x 1 cosα−y 1 sinαy=x 1 sinα+y 1 cosαxcosα+ysinα=P..........(given)⇒x 1 (cos 2 α+sin 2 α)+y(sinαcosα−cosαsinα)=P..............(substitute the values of x and y) x 1
By rotation of axes,x=x 1 cosα−y 1 sinαy=x 1 sinα+y 1 cosαxcosα+ysinα=P..........(given)⇒x 1 (cos 2 α+sin 2 α)+y(sinαcosα−cosαsinα)=P..............(substitute the values of x and y) x 1 =P => X=P.
Hope this is helpful
Step-by-step explanation:
hope it helps
Mark me has brainliest