Math, asked by harshaPlaty, 8 months ago

When the axes are rotated through an angle
 \alpha  \:
, find the transformed equation of x cos
 \alpha
+ y sin
 \alpha
=p​

Answers

Answered by gurpreetsinghoppoa31
3

Ans.

By rotation of axes,

By rotation of axes,x=x

By rotation of axes,x=x 1

By rotation of axes,x=x 1

By rotation of axes,x=x 1 cosα−y

By rotation of axes,x=x 1 cosα−y 1

By rotation of axes,x=x 1 cosα−y 1

By rotation of axes,x=x 1 cosα−y 1 sinα

By rotation of axes,x=x 1 cosα−y 1 sinαy=x

By rotation of axes,x=x 1 cosα−y 1 sinαy=x 1

By rotation of axes,x=x 1 cosα−y 1 sinαy=x 1

By rotation of axes,x=x 1 cosα−y 1 sinαy=x 1 sinα+y

By rotation of axes,x=x 1 cosα−y 1 sinαy=x 1 sinα+y 1

By rotation of axes,x=x 1 cosα−y 1 sinαy=x 1 sinα+y 1

By rotation of axes,x=x 1 cosα−y 1 sinαy=x 1 sinα+y 1 cosα

By rotation of axes,x=x 1 cosα−y 1 sinαy=x 1 sinα+y 1 cosαxcosα+ysinα=P..........(given)

By rotation of axes,x=x 1 cosα−y 1 sinαy=x 1 sinα+y 1 cosαxcosα+ysinα=P..........(given)⇒x

By rotation of axes,x=x 1 cosα−y 1 sinαy=x 1 sinα+y 1 cosαxcosα+ysinα=P..........(given)⇒x 1

By rotation of axes,x=x 1 cosα−y 1 sinαy=x 1 sinα+y 1 cosαxcosα+ysinα=P..........(given)⇒x 1

By rotation of axes,x=x 1 cosα−y 1 sinαy=x 1 sinα+y 1 cosαxcosα+ysinα=P..........(given)⇒x 1 (cos

By rotation of axes,x=x 1 cosα−y 1 sinαy=x 1 sinα+y 1 cosαxcosα+ysinα=P..........(given)⇒x 1 (cos 2

By rotation of axes,x=x 1 cosα−y 1 sinαy=x 1 sinα+y 1 cosαxcosα+ysinα=P..........(given)⇒x 1 (cos 2 α+sin

By rotation of axes,x=x 1 cosα−y 1 sinαy=x 1 sinα+y 1 cosαxcosα+ysinα=P..........(given)⇒x 1 (cos 2 α+sin 2

By rotation of axes,x=x 1 cosα−y 1 sinαy=x 1 sinα+y 1 cosαxcosα+ysinα=P..........(given)⇒x 1 (cos 2 α+sin 2 α)+y(sinαcosα−cosαsinα)=P..............(substitute the values of x and y)

By rotation of axes,x=x 1 cosα−y 1 sinαy=x 1 sinα+y 1 cosαxcosα+ysinα=P..........(given)⇒x 1 (cos 2 α+sin 2 α)+y(sinαcosα−cosαsinα)=P..............(substitute the values of x and y) x

By rotation of axes,x=x 1 cosα−y 1 sinαy=x 1 sinα+y 1 cosαxcosα+ysinα=P..........(given)⇒x 1 (cos 2 α+sin 2 α)+y(sinαcosα−cosαsinα)=P..............(substitute the values of x and y) x 1

By rotation of axes,x=x 1 cosα−y 1 sinαy=x 1 sinα+y 1 cosαxcosα+ysinα=P..........(given)⇒x 1 (cos 2 α+sin 2 α)+y(sinαcosα−cosαsinα)=P..............(substitute the values of x and y) x 1

By rotation of axes,x=x 1 cosα−y 1 sinαy=x 1 sinα+y 1 cosαxcosα+ysinα=P..........(given)⇒x 1 (cos 2 α+sin 2 α)+y(sinαcosα−cosαsinα)=P..............(substitute the values of x and y) x 1 =P => X=P.

Hope this is helpful

Answered by meghanaperla1234
13

Step-by-step explanation:

hope it helps

Mark me has brainliest

Attachments:
Similar questions