Math, asked by harshavardhang7313, 1 year ago

When the axis are rotated through an angle π/4, find the transformed equation of 3x² + 10xy + 3y² = 9.

Answers

Answered by knjroopa
43

Step-by-step explanation:

Given When the axis are rotated through an angle π/4, find the transformed equation of 3x² + 10xy + 3y² = 9.

  • Now to form a new cartesian plane with coordinates (x1,y1), a conic equation of the form ax^2 + bxy + cy^2 + dx + ey + f = 0 is rotated by an angle theta.
  • So the relation can be written as  
  • So x = x1 cos theta – y1 sin theta  
  • Or x1 = x cos theta + y sin theta
  • Also y = x1 sin theta + y1 cos theta
  • Or y1 = - x sin theta + y cos theta
  • Now we have from the equation 3x^2 + 10 xy + 3y^2 – 9 = 0,
  • a = 3, b = 10 and c = 3
  • Now we need to get theta, so cot 2 theta = a – c / b
  •                                                                         = 0 / 3  
  •                                                                          = 0,
  •                                                        So theta = π / 4
  • Now we have the expression as x = x1 cos π/4 – y sin π/4
  •                                          Also y = x1 sin π/4 + y1 cos π/4
  • therefore x = x1/√2 – y1/√2 and y = x1/√2 + y1/√2
  • so we get the equation as  
  •  3(x1/√2 – y1/√2)^2 + 10 (x1/√2 – y1/√2)( x1/√2 + y1/√2) + 3(x1/√2 + y1/√2)^2 – 9 = 0
  •      We can write it as  
  •   3 (x1^2/2 + y1^2/2 – x1y1) + 10 (x1^2 / 2 – y1^2 / 2) + 3(x1^2 / 2 + y1^2 / 2 + x1y1) – 9 = 0
  •  Simplifying we get
  • 3x1^2 / 2 + 3x1^2 / 2 + 10 x1^2/2 – 3 x1y1 – 10y1^2/2 + 6y1^2/2 + 3x1y1 – 9 = 0
  •                                     Or 8x1^2 – 2y1^2 – 9 = 0

Reference link will be

https://brainly.in/question/10688038

Answered by NehaAlfassa
67

Answer:

Hlo Mate..

Hope this is helpful..

Attachments:
Similar questions