Math, asked by Sreemedha, 9 months ago

When the coordinate axes are rotated through an angle of 135°,a point P changes to (4, −3). Find the
original coordinates of P

Answers

Answered by jitendra420156
21

Answer:

Therefore the original coordinate of P is (-\frac{1}{\sqrt2},\frac{7}{\sqrt2}).

Step-by-step explanation:

If the coordinate axes rotates at an angle θ. Then original coordinate P(x,y)  change into P'(x',y')

x= x'cos\theta-y'sin\theta

y=x'sin\theta +y'cos \theta

Given that a point changes to (4,-3).

Here x' = 4 and y'= -3 and θ = 135°

Let (x,y) be the original coordinate of P

Then

x= 4 cos 135° - (-3) sin 135°

 =4.(-\frac{1}{\sqrt2})+3.(\frac1 {\sqrt2})

 =-\frac{1}{\sqrt2}

and y = 4 sin 135°+(-3) cos 135°

          =4.(\frac{1}{\sqrt2})-3.(-\frac1 {\sqrt2})

           =\frac{7}{\sqrt 2}

Therefore the original coordinate of P is (-\frac{1}{\sqrt2},\frac{7}{\sqrt2})

Similar questions