When the given roots are α,β,ω,∅,Δ form the polynomial equation.
(Please expand and write the polynomial)
Answers
Answered by
45
Let α = a,
β = b
ω = c
∅ = d
Δ = e ( for convenience)
We know that,
Polynomial with the above roots is ( x - a) ( x - b) ( x - c) ( x - d) ( x - e)
Let's simplify to get the polynomial.
( x - a) ( x - b) ( x - c) ( x - d) ( x - e)
= (x² -ax-bx+ab)( x - c) ( x - d) ( x - e)
= (x³ - ax² - bx² + abx - cx² + acx + bcx - abc ) ( x - d ) ( x - e )
=[ x³ - (a + b+ c)x² + ( ab+ bc+ca)x - abc ] ( x - d ) ( x - e )
= [x^4 - (a + b+ c)x³ + ( ab+ bc+ca)x²- abcx -dx³ + (a + b + c )dx² - ( ab + bc + ca )dx + abcd ] ( x - e )
= [ x^4 - ( a + b + c + d )x³+ ( ab + bc + ca + ad + bd + cd )x² - ( abd + bcd + cda + abc )x + abcd ] ( x - e )
= [ x^5 - ( a + b + c + d )x^4+ ( ab + bc + ca + ad + bd + cd )x³ - ( abd + bcd + cda + abc )x²+ abcdx - ex^4 + ( a + b + c + d )ex³ - ( ab + bc + ca + ad + bd+ cd)ex² + ( abd + bcd + cda + abc )ex - abcde
= x^5 - ( a + b + c + d + e )x^4 + ( ab + bc + ca + ad + bd + cd + ae + be + ce + de )x³ - ( abd + bcd + cda + abc + abe + bce + cae + ade + bde + cde )x² + ( abcd + abde + bcde + cdae + abce )x - abcde
Or ,If you want in native variables ,
( x - α) ( x - β) ( x - ω) ( x - ∅) ( x - Δ)
=(x² -αx-βx+αβ)( x - ω) ( x - ∅) ( x - Δ)
=(x³ - αx² - βx² + αβx - ωx² + αωx + βωx - αβω ) ( x - ∅ ) ( x - Δ )
=[ x³ - (α + β+ ω)x² + ( αβ+ βω+ωα)x - αβω ] ( x - ∅ ) ( x - Δ )
=[x^4 - (α + β+ ω)x³ + ( αβ+ βω+ωα)x²- αβωx -∅x³ + (α + β + ω )∅x² - ( αβ + βω + ωα )∅x + αβω∅ ] ( x - Δ )
= [ x^4 - ( α + β + ω + ∅ )x³+ ( αβ + βω + ωα + α∅ + β∅ + ω∅ )x² - ( αβ∅ + βω∅ + ω∅α + αβω )x + αβω∅ ] ( x - Δ )
= [ x^5 - ( α + β + ω + ∅ )x^4+ ( αβ + βω + ωα + α∅ + β∅ + ω∅ )x³ - ( αβ∅ + βω∅ + ω∅α + αβω )x²+ αβω∅x - Δx^4 + ( α + β + ω + ∅ )Δx³ - ( αβ + βω + ωα + α∅ + β∅+ ω∅)Δx² + ( αβ∅ + βω∅ + ω∅α + αβω )Δx - αβω∅Δ
= x^5 - ( α + β + ω + ∅ + Δ )x^4 + ( αβ + βω + ωα + α∅ + β∅ + ω∅ + αΔ + βΔ + ωΔ + ∅Δ )x³ - ( αβ∅ + βω∅ + ω∅α + αβω + αβΔ + βωΔ + ωαΔ + α∅Δ + β∅Δ + ω∅Δ )x² + ( αβω∅ + αβ∅Δ + βω∅Δ + ω∅αΔ + αβωΔ )x - αβω∅Δ .
Hope helped !
β = b
ω = c
∅ = d
Δ = e ( for convenience)
We know that,
Polynomial with the above roots is ( x - a) ( x - b) ( x - c) ( x - d) ( x - e)
Let's simplify to get the polynomial.
( x - a) ( x - b) ( x - c) ( x - d) ( x - e)
= (x² -ax-bx+ab)( x - c) ( x - d) ( x - e)
= (x³ - ax² - bx² + abx - cx² + acx + bcx - abc ) ( x - d ) ( x - e )
=[ x³ - (a + b+ c)x² + ( ab+ bc+ca)x - abc ] ( x - d ) ( x - e )
= [x^4 - (a + b+ c)x³ + ( ab+ bc+ca)x²- abcx -dx³ + (a + b + c )dx² - ( ab + bc + ca )dx + abcd ] ( x - e )
= [ x^4 - ( a + b + c + d )x³+ ( ab + bc + ca + ad + bd + cd )x² - ( abd + bcd + cda + abc )x + abcd ] ( x - e )
= [ x^5 - ( a + b + c + d )x^4+ ( ab + bc + ca + ad + bd + cd )x³ - ( abd + bcd + cda + abc )x²+ abcdx - ex^4 + ( a + b + c + d )ex³ - ( ab + bc + ca + ad + bd+ cd)ex² + ( abd + bcd + cda + abc )ex - abcde
= x^5 - ( a + b + c + d + e )x^4 + ( ab + bc + ca + ad + bd + cd + ae + be + ce + de )x³ - ( abd + bcd + cda + abc + abe + bce + cae + ade + bde + cde )x² + ( abcd + abde + bcde + cdae + abce )x - abcde
Or ,If you want in native variables ,
( x - α) ( x - β) ( x - ω) ( x - ∅) ( x - Δ)
=(x² -αx-βx+αβ)( x - ω) ( x - ∅) ( x - Δ)
=(x³ - αx² - βx² + αβx - ωx² + αωx + βωx - αβω ) ( x - ∅ ) ( x - Δ )
=[ x³ - (α + β+ ω)x² + ( αβ+ βω+ωα)x - αβω ] ( x - ∅ ) ( x - Δ )
=[x^4 - (α + β+ ω)x³ + ( αβ+ βω+ωα)x²- αβωx -∅x³ + (α + β + ω )∅x² - ( αβ + βω + ωα )∅x + αβω∅ ] ( x - Δ )
= [ x^4 - ( α + β + ω + ∅ )x³+ ( αβ + βω + ωα + α∅ + β∅ + ω∅ )x² - ( αβ∅ + βω∅ + ω∅α + αβω )x + αβω∅ ] ( x - Δ )
= [ x^5 - ( α + β + ω + ∅ )x^4+ ( αβ + βω + ωα + α∅ + β∅ + ω∅ )x³ - ( αβ∅ + βω∅ + ω∅α + αβω )x²+ αβω∅x - Δx^4 + ( α + β + ω + ∅ )Δx³ - ( αβ + βω + ωα + α∅ + β∅+ ω∅)Δx² + ( αβ∅ + βω∅ + ω∅α + αβω )Δx - αβω∅Δ
= x^5 - ( α + β + ω + ∅ + Δ )x^4 + ( αβ + βω + ωα + α∅ + β∅ + ω∅ + αΔ + βΔ + ωΔ + ∅Δ )x³ - ( αβ∅ + βω∅ + ω∅α + αβω + αβΔ + βωΔ + ωαΔ + α∅Δ + β∅Δ + ω∅Δ )x² + ( αβω∅ + αβ∅Δ + βω∅Δ + ω∅αΔ + αβωΔ )x - αβω∅Δ .
Hope helped !
Arpita2005:
What's it? Omg!!
Answered by
21
{ Here is a short method to help you. }
Since, α, β, ω, ∅ and Δ are the zeroes of the required polynomial, by the relation between zeroes and coefficients, we can write the polynomial as
x⁵ - (Σ α) x⁴ + (Σ αβ) x³ - (Σ αβω) x² + (Σ αβω∅) x - αβω∅Δ
= x⁵ - (α + β + ω + ∅ + Δ) x⁴ + (αβ + βω + ωα + α∅ + β∅ + ω∅ + αΔ + βΔ + ωΔ + ∅Δ) x³ - (αβ∅ + βω∅ + ω∅α + αβω + αβΔ + βωΔ + ωαΔ + α∅Δ + β∅Δ + ω∅Δ) x² + (αβω∅ + αβ∅Δ + βω∅Δ + ω∅αΔ + αβωΔ) x - αβω∅Δ
#
Similar questions
English,
8 months ago
English,
8 months ago
Computer Science,
8 months ago
Chemistry,
1 year ago
Economy,
1 year ago