when the length of the shadow of a tree becomes equal to the height of the tree then the angle of elevation of the sun becomes
Answers
Answered by
2
Answer: Option A

Explanation:
Let AB be the tree and AC be its shadow, So as per question, shadow of a tree is \begin{aligned}\sqrt{3}\end{aligned} times the height of tree. Let h be the height of the tree, then
\begin{aligned}
\frac{AB}{AC} = tan\theta \\
=> \frac{h}{\sqrt{3}h} = tan\theta \\
=> tan\theta = \frac{1}{\sqrt{3}} \\
=> \theta = 30^{\circ}
\end{aligned}

Explanation:
Let AB be the tree and AC be its shadow, So as per question, shadow of a tree is \begin{aligned}\sqrt{3}\end{aligned} times the height of tree. Let h be the height of the tree, then
\begin{aligned}
\frac{AB}{AC} = tan\theta \\
=> \frac{h}{\sqrt{3}h} = tan\theta \\
=> tan\theta = \frac{1}{\sqrt{3}} \\
=> \theta = 30^{\circ}
\end{aligned}
Answered by
1
45°is the answer because the triangle formed will be an isocles triange
###IT IS THE SIMPLIST ANSWER###
@@PLEASE MARK AA BRAINLIEST@@
Similar questions