Physics, asked by sanjatkumar42, 10 months ago

When the motion of a particle in x-y plane is defined by r = t²î + (4t-t³)ĵ where t is in sec and r is in meter.
Find (a) Average velocity in the time interval 1 sce to 3 sec. (b) Velocity of the particle at t= 3 sec. (c) Average acceleration in the time interval 1 sec to 3 sec. (d) Acceleration the particle at t = 3 sec.​

Answers

Answered by Anonymous
57

\Huge{\underline{\underline{\mathfrak{Answer \colon }}}}

The position of the particle is defined by the function:

 \sf{r =  {t}^{2} \hat{i} \:  + (4t -  {t}^{3}) \hat{j}  } \\  \\  \rightarrow \:  \sf{r =  {t}^{2} \hat{i} + 4t \hat{j} -  {t}^{3} \hat{j}  }

To find

  • Average Velocity

  • Average Acceleration

Differentiating r w.r.t to t,we get velocity of the particle :

 \sf{ \vec{v} =  \frac{d(\sf{{t}^{2} \hat{i} + 4t \hat{j} -  {t}^{3} \hat{j}  })}{dt} }  \\  \\  \rightarrow \  \boxed{\sf{ \vec{v} = 2t  \hat{i} \:  + 4 \hat{j} - 3t {}^{2} \hat{j} }}

  • When t = 1s,

 \sf{ \vec{v} = 2(1) \hat{i} + 4 \hat{j} - 3(1) \hat{j}} \\  \\  \implies \:  \sf{ \vec{v} =( 2 \hat{i} +  \hat{j}) \:  {ms}^{ - 1} }

  • When t = 3s,

 \sf{ \vec{v} = 2(3) \hat{i} + 4 \hat{j} - 3(3) \hat{j}}  \\  \\  \implies \:  \sf{ \vec{v} = (6 \hat{i} - 5 \hat{j}) \: ms {}^{ - 1} }

Thus,the velocity vector at t = 3s is (6î - 5j) m/s

Average Velocity

 \displaystyle{\sf{ \vec{ \bar{v}} =  \frac{(6 \hat{i} - 5 \hat{j}) - (2 \hat{i} +  \hat{j})}{3 - 1} } }\\  \\  \displaystyle{ \leadsto  \: \sf{ \vec{ \bar{v}} \:  =  \frac{4 \hat{i} - 6 \hat{j}}{2} }} \\  \\  \huge{ \leadsto \:   \green{\sf{ \vec{ \bar{v}}} = (2 \hat{i} - 3 \hat{j}) \: ms {}^{ - 1}}}

_________________________________________

___________________________

Differentiating v w.r.t to t,we get acceleration of the particle:

 \sf{ \vec{a} =  \frac{d(2t  \hat{i} \:  + 4 \hat{j} - 3t {}^{2} \hat{j} )}{dt} } \\  \\  \rightarrow \:  \boxed{ \sf{ \vec{a} =( 2 \hat{i} - 6t \hat{j}) \: ms {}^{ - 2} }}

  • When t = 1s,

 \sf{ \vec{a} =( 2 \hat{i} -  6 \: \hat{j}) \:  {ms}^{ - 2} }

  • When t = 3s,

 \sf{ \vec{a} = 2 \hat{i} - 12 \hat{j}}

Acceleration vector of the particle at t = 3s is (2î - 12j)m/s²

Average Acceleration

 \sf{ \vec{ \bar{a}} =  \frac{(2 \hat{i} - 12 \hat{j}) - (2 \hat{i} - 6 \hat{j})}{3 - 1} } \\  \\   \huge{\leadsto \:  \sf{ \green{ \vec{\bar{a}} \:  =  - 3 \hat{j} \: ms {}^{ - 2} }}}

_________________________________________

__________________

Similar questions