Math, asked by abhinayaabhi1436, 10 months ago

When the origin shifted to a suitable point p, the equation 2x^2 + y^2 - 4x +4y=0 transformed as 2x^2 + y^2 - 8x + 8y + 18 = 0 then p=

Answers

Answered by mahendranath1542
1

Answer:

The point P can be (-1, -6) or (-1, 2)

Step-by-step explanation:

Given

Original equation

2x^2+y^2-4x+4y=02x

2

+y

2

−4x+4y=0 ...... (1)

The transformed equation in new coordinate system (X,Y)

2X^2+Y^2-8X+BY+18=02X

2

+Y

2

−8X+BY+18=0 ......... (2)

Let the point P be (h,k)

Then in new coordinate system

X=x-hX=x−h or x=X+hx=X+h

Y=y-kY=y−k or y=Y+ky=Y+k

Therefore, from (2)

2(x-h)^2+(y-k)^2-8(x-h)+B(y-k)+18=02(x−h)

2

+(y−k)

2

−8(x−h)+B(y−k)+18=0

\implies 2(x^2-2xh+h^2)+(y^2-2yk+k^2)-8x+8h+By-Bk+18=0⟹2(x

2

−2xh+h

2

)+(y

2

−2yk+k

2

)−8x+8h+By−Bk+18=0

\implies 2x^2+y^2-(4h+8)x+(-2k+B)y+(2h^2+k^2+8h-Bk+18)=0⟹2x

2

+y

2

−(4h+8)x+(−2k+B)y+(2h

2

+k

2

+8h−Bk+18)=0

Comparing this equation with equation (1)

4h+8=44h+8=4

\implies 4h=-4⟹4h=−4

\implies h=-1⟹h=−1

And

-2k+B=4−2k+B=4

\implies B=4+2k⟹B=4+2k

Also,

(2h^2+k^2+8h-Bk+18)=0(2h

2

+k

2

+8h−Bk+18)=0

\implies 2(-1)^2+k^2+8(-1)-(4+2k)k+18=0⟹2(−1)

2

+k

2

+8(−1)−(4+2k)k+18=0

\implies 2+k^2-8-4k-2k^2+18=0⟹2+k

2

−8−4k−2k

2

+18=0

\implies -k^2-4k+12=0⟹−k

2

−4k+12=0

\implies k^2+4k-12=0⟹k

2

+4k−12=0

\implies k^2+6k-2k-12=0⟹k

2

+6k−2k−12=0

\implies k(k+6)-2(k+6)=0⟹k(k+6)−2(k+6)=0

\implies (k+6)(k-2)=0⟹(k+6)(k−2)=0

\implies k=-6, 2⟹k=−6,2

Therefore, the twp possible values of P can be

(-1,-6)(−1,−6) and (-1,2)(−1,2)

Hope this answer is helpful.

Know More:

Q: Origin shifted to the point (1,2) without changing the direction of the axes then (4,3) is transformed to :

Click Here: https://brainly.in/question/10996595

Q: Find the transformed equation of the straight line 2x-3y+5=0 when the origin is shifted to the point (3,-1) after the translation of axis.

Similar questions