Math, asked by prashantasethi5379, 11 months ago

When the ratio of the height of a telephone pole and the length of its shadow is root 3:1, find the angle of elevation of the sun.

Answers

Answered by BrainlyConqueror0901
2

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Angle\:of\:elevation\approx71.6\degree}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given:}}   \\  \tt:  { \implies Height:Shadow\:of\:pole=3:1} \\ \\ \red{\underline \bold{To \: Find:}} \\  \tt:  {\implies Angle \: of \: elevation = ?}

• According to given question :

 \circ \:  \tt{Let \: angle \: of \: elevation \: of \:  \: pole \: be\:  \alpha } \\  \\  \bold{As \: we \: know \: that} \\  \tt: {\implies tan \:  \alpha =  \frac{Perpendicular}{Base}  }\\  \\  \tt:{  \implies tan \:  \alpha =  \frac{3x}{x}}\\\\ \tt:{\implies tan\:\alpha=\frac{3}{1} }

 \tt: { \implies  \alpha  =  {tan}^{ - 1} ( 3) }\\  \\  \tt \circ \: tan \: 71.6 \degree \approx  3\\  \\    \green{\tt:  \implies  \alpha  \approx  71.6\degree} \\  \\   \green{\tt {\therefore Angle \: of \: elevation \: of \: pole \: to \: ground \: is \:\approx71.6 \degree}}

 \blue{ \bold{Some \: property \: of \: trigonometery}} \\   \orange{\tt {\circ \: sin  \: \alpha =  \frac{Perpendicular}{Hypotenuse}} } \\  \\   \orange{\tt{ \circ \: cos \: \alpha =  \frac{Base}{Hypotenuse}} } \\  \\    \orange{\tt{ \circ \: cot \: \alpha =  \frac{Base}{Hypotenuse}} } \\  \\   \orange{\tt {\circ \: cosec \:  \alpha  =  \frac{Hypotenuse}{Perpendicular} }} \\  \\ \orange{\tt {\circ \: sec \:  \alpha  =  \frac{Hypotenuse}{Base} }}

Answered by MarshmellowGirl
33

 \large \underline{ \blue{ \boxed{ \bf \green{Required \: Answer}}}}

Attachments:
Similar questions