Math, asked by Afxan7991, 1 year ago

When the sun's altitude changes from 30° to 60°, the length of the shadow of a tower decreases by 70m. what is the height of the tower?

Answers

Answered by garima1311
17
Let AD be the tower, BD be the initial shadow and CD be the final shadow.

Given that BC = 70 m, ABD = 30°, ACD = 60°,

Let CD = x, AD = h

From the right  CDA, 
@@\tan 60° = \dfrac{\text{AD}}{\text{CD}}\\ \sqrt{3} = \dfrac{\text{h}}{\text{x}}\quad \cdots(eq:1)@@

From the right  BDA, 
@@\tan 30° = \dfrac{\text{AD}}{\text{BD}}\\ \dfrac{1}{\sqrt{3}} = \dfrac{\text{h}}{70 + \text{x}}\quad \cdots(eq:2)@@

@@\dfrac{eq:1}{eq:2} \Rightarrow \dfrac{\sqrt{3}}{\left(\dfrac{1}{\sqrt{3}}\right)}=\dfrac{\left(\dfrac{\text{h}}{\text{x}}\right)}{\left(\dfrac{\text{h}}{70+\text{x}}\right)}\\ \Rightarrow 3 = \dfrac{70 + \text{x}}{\text{x}}\\ \Rightarrow 2x = 70 \\ \Rightarrow x = 35@@

Substituting this value of x in eq:1, we have
@@\sqrt{3} = \dfrac{\text{h}}{35}\\ \Rightarrow \text{h} = 35\sqrt{3} = 35 \times 1.73 \\= 60.55 \approx 60.6 @@


HOPE THIS ANSWER HELPS YOU
MARK AS BRAINLIEST ✌✌
_______×××××_______
Attachments:

yogesh1232002: what the hell it is
Similar questions