When the sun's altitude changes from 30° to 60°, the length of the shadow of a tower decreases by 70m. what is the height of the tower?
Answers
Answered by
17
Let AD be the tower, BD be the initial shadow and CD be the final shadow.
Given that BC = 70 m, ABD = 30°, ACD = 60°,
Let CD = x, AD = h
From the right CDA,
@@\tan 60° = \dfrac{\text{AD}}{\text{CD}}\\ \sqrt{3} = \dfrac{\text{h}}{\text{x}}\quad \cdots(eq:1)@@
From the right BDA,
@@\tan 30° = \dfrac{\text{AD}}{\text{BD}}\\ \dfrac{1}{\sqrt{3}} = \dfrac{\text{h}}{70 + \text{x}}\quad \cdots(eq:2)@@
@@\dfrac{eq:1}{eq:2} \Rightarrow \dfrac{\sqrt{3}}{\left(\dfrac{1}{\sqrt{3}}\right)}=\dfrac{\left(\dfrac{\text{h}}{\text{x}}\right)}{\left(\dfrac{\text{h}}{70+\text{x}}\right)}\\ \Rightarrow 3 = \dfrac{70 + \text{x}}{\text{x}}\\ \Rightarrow 2x = 70 \\ \Rightarrow x = 35@@
Substituting this value of x in eq:1, we have
@@\sqrt{3} = \dfrac{\text{h}}{35}\\ \Rightarrow \text{h} = 35\sqrt{3} = 35 \times 1.73 \\= 60.55 \approx 60.6 @@
HOPE THIS ANSWER HELPS YOU
MARK AS BRAINLIEST ✌✌
_______×××××_______
Given that BC = 70 m, ABD = 30°, ACD = 60°,
Let CD = x, AD = h
From the right CDA,
@@\tan 60° = \dfrac{\text{AD}}{\text{CD}}\\ \sqrt{3} = \dfrac{\text{h}}{\text{x}}\quad \cdots(eq:1)@@
From the right BDA,
@@\tan 30° = \dfrac{\text{AD}}{\text{BD}}\\ \dfrac{1}{\sqrt{3}} = \dfrac{\text{h}}{70 + \text{x}}\quad \cdots(eq:2)@@
@@\dfrac{eq:1}{eq:2} \Rightarrow \dfrac{\sqrt{3}}{\left(\dfrac{1}{\sqrt{3}}\right)}=\dfrac{\left(\dfrac{\text{h}}{\text{x}}\right)}{\left(\dfrac{\text{h}}{70+\text{x}}\right)}\\ \Rightarrow 3 = \dfrac{70 + \text{x}}{\text{x}}\\ \Rightarrow 2x = 70 \\ \Rightarrow x = 35@@
Substituting this value of x in eq:1, we have
@@\sqrt{3} = \dfrac{\text{h}}{35}\\ \Rightarrow \text{h} = 35\sqrt{3} = 35 \times 1.73 \\= 60.55 \approx 60.6 @@
HOPE THIS ANSWER HELPS YOU
MARK AS BRAINLIEST ✌✌
_______×××××_______
Attachments:
![](https://hi-static.z-dn.net/files/d53/f635f9cae9c2d337bb2976c883434b44.jpg)
yogesh1232002:
what the hell it is
Similar questions