Physics, asked by mehdikazmi880, 1 month ago

When two bodies are in motion,the change in position of one body with respect to the other depends on which factor/s ​

Answers

Answered by CUTEMANU1
3

Answer:

In classical mechanics, the two-body problem is to predict the motion of two massive objects which are abstractly viewed as point particles. The problem assumes that the two objects interact only with one another; the only force affecting each object arises from the other one, and all other objects are ignored.

Left: Two bodies with similar mass orbiting a common barycenter external to both bodies, with elliptic orbits—typical of binary stars. Right: Two bodies with a "slight" difference in mass orbiting a common barycenter. The sizes, and this type of orbit are similar to the Pluto–Charon system (in which the barycenter is external to both bodies), and to the Earth–Moon system—where the barycenter is internal to the larger body.

The most prominent case of the classical two-body problem is the gravitational case (see also Kepler problem), arising in astronomy for predicting the orbits (or escapes from orbit) of objects such as satellites, planets, and stars. A two-point-particle model of such a system nearly always describes its behavior well enough to provide useful insights and predictions.

A simpler "one body" model, the "central-force problem", treats one object as the immobile source of a force acting on other. One then seeks to predict the motion of the single remaining mobile object. Such an approximation can give useful results when one object is much more massive than the other (as with a light planet orbiting a heavy star, where the star can be treated as essentially stationary).

However, the one-body approximation is usually unnecessary except as a stepping stone. For many forces, including gravitational ones, the general version of the two-body problem can be reduced to a pair of one-body problems, allowing it to be solved completely, and giving a solution simple enough to be used effectively.

By contrast, the three-body problem (and, more generally, the n-body problem for n ≥ 3) cannot be solved in terms of first integrals, except in special cases.

Explanation:

p please mark me as brainleist

Answered by xxbrainlyqueenxx37
13

Answer -:☺️☺️

Inertia is the resistance of any physical object to any change in its velocity. This includes changes to the object's speed, or direction of motion. An aspect of this property is the tendency of objects to keep moving in a straight line at a constant speed, when no forces act upon them.

Inertia comes from the Latin word, iners, meaning idle, sluggish. Inertia is one of the primary manifestations of mass, which is a quantitative property of physical systems. Isaac Newton defined inertia as a force, before his first law in the monumental Philosophiæ Naturalis Principia Mathematica. There, one reads:

DEFINITION III. The vis insita, or innate force of matter, is a power of resisting by which every body, as much as in it lies, endeavours to persevere in its present state, whether it be of rest or of moving uniformly forward in a right line.[1]

After some other definitions, Newton states (at page 83) his first law of motion:

LAW I. Every body perseveres in its state of rest, or of uniform motion in a right line, unless it is compelled to change that state by forces impressed thereon.

Note that Newton makes use of the active verbal form "to persevere", rather than other passive forms such as "to continue", or "to remain", commonly found in modern textbooks. This follows from some changes in Newton's original mechanics (as stated in the Principia) made by Euler, d'Alembert, and other Cartesians.

In common usage, the term "inertia" may refer to an object's "amount of resistance to change in velocity" or for simpler terms, "resistance to a change in motion" (which is quantified by its mass), or sometimes to its momentum, depending on the context. The term "inertia" is more properly understood as shorthand for "the principle of inertia" as described by Newton in his first law of motion, stated above, according to which an object will continue moving at its current velocity until some force causes its speed or direction to change.

On the surface of the Earth, inertia is often masked by gravity and the effects of friction and air resistance, both of which tend to decrease the speed of moving objects (commonly to the point of rest). This misled the philosopher Aristotle to believe that objects would move only as long as force was applied to them.[2][3]

The principle of inertia is one of the fundamental principles in classical physics that are still used today to describe the motion of objects and how they are affected by the applied forces on them.

Similar questions