Physics, asked by ayeshakhanam51, 4 months ago

when two right angled vector of magnitude 8 units and 26unitswhat is the magnitude of resultant vector​

Answers

Answered by Anonymous
7

Answer:

Explanation:

Given :

  • Two right angled vector of magnitude 8 units and 26 units.

To Find :

  • The magnitude of resultant vector.

Solution :

Let, resultant vector be "R".

The resultant vector forms the hypotenuse while the constituent vectors form the other two sides.

Hence, Apply pythagoras theorem,

 \longrightarrow \sf \: R =  \sqrt{(8 {}^{2} + 26) {}^{2}  }  \\  \\  \longrightarrow \sf \: R =  \sqrt{(64 + 676)}  \\  \\ \longrightarrow \sf \: R =  \sqrt{(740)}  \\  \\ \longrightarrow \sf \red{R =27.2 \: units }

Hence :

The magnitude of resultant vector is 27.2 units.

Answered by anshu24497
1

 \Large \mathfrak{ \blue{Given : }}

  • Two right angled vector of magnitude 8 units and 26 units.

 \Large \mathfrak{ \color{green}{To Find : }}

  •  The magnitude of resultant vector.

 \Large \mathfrak{ \orange{Solution :}}

  • Let, resultant vector be "R".

  • The resultant vector forms the hypotenuse while the constituent vectors form the other two sides.

Applying Pythagoras Theorem,

\begin{gathered} { \purple{\implies \sf \: R = \sqrt{(8 {}^{2} + 26) {}^{2} }}} \\ \\ { \purple{\implies \sf \: R = \sqrt{(64 + 676)}}} \\ \\ { \purple{\implies\sf \: R = \sqrt{(740)}}} \\ \\{ \boxed{ { \red{\implies \sf {R =27.2 \: units }}}}}\end{gathered}

Hence, The magnitude of resultant vector is 27.2 units.

Similar questions