Math, asked by rushiyoyo9188, 1 month ago

When we add 6 to the numerator of a fraction, we get 1/2.whwn we add 7 to the denominator of the same fraction .we get 1/3.fing the fraction by forming two equations

Answers

Answered by SparklingBoy
178

Given :-

  • When we add 6 to the numerator of a fraction, we get 1/2.

  • When we add 7 to the denominator of the same fraction, we get 1/3.

To Find :-

  • The Fraction by Forming 2 equations.

Solution :-

Let For the Original Fraction :

  • Numerator = x

  • Denominator = y

So Original Fraction is :  \dfrac{\text x}{\text y}

When 6 is added to The Numerator :

Fraction Becomes :  \dfrac{\text x+6}{\text y}

★ According To Question :

 \dfrac{\text x + 6}{\text y}  =  \frac{1}{2}  \\

:\longmapsto2(\text x + 6) = \text y \\

:\longmapsto2\text x + 12 = \text y \\

:\longmapsto2\bf x -  y =  - 12 \: ----(1) \\

When 7 is added to The Denominator :

Fraction Becomes :  \dfrac{\text x}{\text y+6}

★ According To Question :

 \dfrac{\text x}{\text y + 7}  =  \frac{1}{3}  \\

:\longmapsto3\text x = \text y + 7 \\

:\longmapsto \bf 3x - y = 7  \:  -  -  -  - (2) \\

Subtracting (1) From (2) :

\purple{ \Large :\longmapsto  \underline {\boxed{{\bf x = 19} }}} \\

Putting Value of x in (2) :

:\longmapsto3 \times 19 - \text y = 7 \\

:\longmapsto57 - \text y = 7 \\

:\longmapsto - \text y = 7 - 57 \\

:\longmapsto \cancel - \text y =   \cancel- 50 \\

\purple{ \Large :\longmapsto  \underline {\boxed{{\bf y = 50} }}}

As,

Original Fraction =  \dfrac{\text x}{\text y}

Hence,

\large\underline{\pink{\underline{\frak{\pmb{\text Original \:\: Fraction  =  \dfrac{19}{50}  }}}}}


MystícPhoeníx: Miraculous ;)
Answered by Itzheartcracer
75

Given :-

When we add 6 to the numerator of a fraction, we get 1/2.

and if we add 7 to the denominator of the same fraction, we get 1/3.

To Find :-

Fraction

Solution :-

Let

{\boxed{\frak{\pink{\underline{Fraction=\dfrac{N}{D}}}}}}

◼ C A S E 1 :

\sf\dfrac{N+6}{D}=\dfrac{1}{2}

By cross multiplication

2(N + 6) = 1(D)

2N + 12 = D (i)

◼ C A S E 2

By cross multiplication

1(D + 7) =  3(N)

D + 7 = 3N

Using

2N + 12 + 7 = 3N

3N - 2N = 12 + 7

N = 19

Now, Using 1

2N + 12 = D

2(19) + 12 = D

38 + 12 = D

50 = D

Hence,

Fraction = N/D = 19/50

Similar questions