Math, asked by Anonymous, 2 months ago

When we add 6 to the numerator of a fraction, we get 1/2.whwn we add 7 to the denominator of the same fraction .we get 1/3.fing the fraction by forming two equations​

Answers

Answered by snehitha2
13

Answer:

The required fraction is 19/50

Step-by-step explanation:

Given :

When we add 6 to the numerator of a fraction, we get 1/2.

When we add 7 to the denominator of the same fraction, we get 1/3.

To find :

the fraction

Solution :

Let the numerator be x and the denominator be y.

\longmapsto \sf Fraction=\dfrac{Numerator}{Denominator}

So, the fraction is x/y.

  • 6 is added to numerator of the fraction.

New numerator = x + 6

New fraction =  \tt \dfrac{x+6}{y}

According to the question :

\sf \dfrac{x+6}{y}=\dfrac{1}{2} \\\\ \sf 2(x+6)=1 \times y \\\\ \sf 2x+12=y \\\\ \boxed{\sf 2x-y=-12} \ \ \longrightarrow eqn.1

  • 7 is added to the denominator of the fraction.

New denominator = y + 7

New fraction =  \tt \dfrac{x}{y+7}

According to the question :

\sf \dfrac{x}{y+7}=\dfrac{1}{3} \\\\ \sf 3(x)=1(y+7) \\\\ \sf 3x=y+7 \\\\ \boxed{\sf 3x-y=7} \ \ \longrightarrow eqn.2

Subtract eqn. 1 from eqn. 2 :

3x - y - (2x - y) = 7 - (-12)

3x - y - 2x + y = 7 + 12

 x = 19

Substitute x = 19 in eqn. 2 ,

3x - y = 7

3(19) - y = 7

 57 - y = 7

  y = 57 - 7

  y = 50

Therefore,

\frak{\pmb{\sf The \ original \ fraction=\dfrac{19}{50} }}

Similar questions