When we add p(x) to 4x⁴+2x³-2x²+x-1 the resultant polynomial is divisible by x²+2x-3 find p(x)
plz answer fast and correctly i am giving 100 pts.
Answers
Dividing 4x⁴+2x³-2x²+x-1 by x²+2x-3
The remainder is -61x+65 . So -61x + 65 should be added so that resultant polynomial is divided by x² + 2x -3
∴ P(x) = -61x + 65
Dividing 4x⁴+2x³-2x²+x-1 by x²+2x-3
\begin{gathered} {x}^{2} + 2x - 3 \:) \: 4 {x}^{4} + 2x {}^{3} - 2 {x}^{2} + x - 1 \: ( 4 {x}^{2} - 6x + 22 \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: 4 {x }^{4} + 8 {x}^{3} - 12 {x}^{2} \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: ( - ) \: \: \: \: \: ( - ) \: \: \: \: \: \: ( + )\\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: - - - - - - - - - - - - - - \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: - 6 {x}^{3} + 10 {x}^{2} + x - 1 \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: - 6 {x}^{3} - 12 {x}^{2} + 18x \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: ( + ) \: \: \: ( + ) \: \: \: \: \: \: \: \: \: \: ( - )\\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: - - - - - - - - - - - - - - \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: 22 {x}^{2} - 17x - 1 \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: 22 {x}^{2} + 44x - 66 \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: ( - ) \: \: \: \: \: \: \: \: ( - ) \: \: \: \: \: \: \: ( + ) \\ \\ \: \: \: \: \: \: \: \: \: - - - - - - - - - - - - - - - \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: - 61 x+ 65 \\ \\ \: \: \: \: \: \: \: \: - - - - - - - - - - - - - - - - \end{gathered}
x
2
+2x−3)4x
4
+2x
3
−2x
2
+x−1(4x
2
−6x+22
4x
4
+8x
3
−12x
2
(−)(−)(+)
−−−−−−−−−−−−−−
−6x
3
+10x
2
+x−1
−6x
3
−12x
2
+18x
(+)(+)(−)
−−−−−−−−−−−−−−
22x
2
−17x−1
22x
2
+44x−66
(−)(−)(+)
−−−−−−−−−−−−−−−
−61x+65
−−−−−−−−−−−−−−−−
The remainder is -61x+65 . So -61x + 65 should be added so that resultant polynomial is divided by x² + 2x -3
∴ P(x) = -61x + 65